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Abstract

I study the allocation problem of investors who hold their portfolio until

reaching a target wealth. The strategy suppresses final wealth uncertainty

but creates a time horizon risk. I begin with a classical mean variance

model transposed in the duration domain, then study a dynamic portfolio

choice problem with Generalized Expected Discounted Utility preferences.

Using long-term US return data, I show in the mean variance model that a

large amount of time horizon risk can be diversified away by investing a sig-

nificant share of equities. In the dynamic model, more impatient investors

are also more averse to timing risk and invest less in equities. The optimal

equity share is downward trending as accumulated wealth approaches its

target.
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Introduction

Many households invest in financial markets with a personal goal in mind, like

saving for retirement, buying a home or financially helping their children. Finan-

cial goals with an explicit wealth target takes an uncertain time to be attained,

depending on market performance and volatility. The uncertainty may still suit

investors who prefer waiting to missing their target. People undergoing financial

losses may choose to defer the purchase of e.g. a new car or their retirement date.

When feasible or affordable, setting a flexible time horizon can be an effective

risk management policy. By doing so, investors escape final wealth risk but face

in exchange a time horizon (or duration) risk. A target wealth combined with a

flexible time horizon have fundamental consequences for the way investors trade

risk off for return in financial markets. By investing in equities instead of fixed

income assets, investors may expect a shorter delay but also a riskier investment

time interval.

In this article I study a two-asset portfolio choice problem of an investor

who sets a money goal and exits the market when it is attained. Investors are

impatient and prefer a shorter time horizon all else equal. Experimental evidence

also shows that investors are also timing risk averse (Onay and Öncüler, 2007,

Dejarnette et al., 2020), i.e. prefer to meet their target wealth in a sure date

than in a random one with equal expected delay. Moreover, when faced with two

non-degenerate mean preserving date distributions, they prefer the less risky one.

I find that the classical risk-return trade-off faced by investors in the wealth

domain differently transposes in the duration domain. Using annual return data

on US equity and short-term bonds (commercial papers and certificates of de-

posits) between 1871 and 2019, I present five stylized facts about the comparative

benefits of money market assets and equities in terms of expected duration and
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duration risk. Since bills generate less return on average, they entail longer du-

rations than equities. More surprisingly, they are also riskier than equities in

terms of duration variance and skewness. I then present a CAPM-like portfolio

choice model in which investors have mean variance preferences over uncertain

investment durations. Based on long-period return statistics, I show that a large

amount of duration risk can be diversified away by buying a large share of equi-

ties.

Next, I study a dynamic and microfounded model of portfolio choice with

uncertain time horizon. Investors compose their portfolio with two assets. The

first asset is more profitable in expectation and riskier than the second one. The

trade-off between expected duration and duration risk is modeled by assuming

that investors maximize Generalized Expected Discounted Utility (Dejarnette et

al., 2020). Impatience plays a key role in the portfolio choice. On the one hand,

impatient investors find short-term bond unattractive as low yield means longer

expected investment periods. On the other hand, impatience, not marginal utility

of wealth across states, is the main driver of risk aversion in the duration domain.

More impatient investors are also more timing risk averse. The second factor

dominates the first one with the result that more impatient individuals invest

less in equities. I also show that investors optimally rebalance their portfolio by

decreasing the equity share when wealth approaches its target.

Portfolio choice and the optimal combination of risky and safe assets have

been extensively studied in the literature, starting with the seminal Capital Asset

Pricing Model (CAPM) by Markowitz (1952). Contrary to the CAPM which

assumes a fixed time frame, the present paper studies the twin problem of a fixed

terminal wealth and an uncertain time horizon. A few articles have investigated

related issues. Martellini and Urošević (2006) analyze a Markowitz problem

in which investors face an uncertain exit date. Liu and Loewenstein (2002)
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study an intertemporal portfolio optimization problem with an exponentially

distributed time-horizon. Karatzas and Wang (2001) solve the optimal dynamic

investment problem when the uncertain time horizon is a stopping time of asset

price filtration. Blanchet-Scalliet et al. (2007) extend the setup to a case with a

stochastically time-varying probability of exiting the market. Huang et al. (2008)

adopt a worst-case conditional value-at-risk approach to manage the exit date.

Those articles minimize a measure of downside risk or assume mean-variance

or constant relative risk aversion preferences, whereas this article stresses the

importance of assuming more general preferences in presence of timing risk. Also,

in these articles, exogenous exit dates or exit strategies depend on asset price

behavior. The goal is not formulated as a specific target wealth to be met, as in

this article.

The model contributes to the vast literature on dynamic portfolio choice mod-

els with a long-term focus (see Campbell and Viceira, 2002, for a survey). Stud-

ies generally find that young investors should take more risk than older investors

(e.g. Bodie, Merton and Samuelson, 1991, Viceira, 2001, Cocco, Gomes and

Maenhout, 2005). When wealth risk is replaced by time horizon risk, investors

should not condition the equity share on remaining investment horizon but on

residual wealth to be accumulated to meet their target. Long-term investors set

a high money target relative to their current wealth. In both investment frames,

investors should invest more in equities the more remote their date or wealth

target. However, contrary to popular financial advice with a fixed selling date,

the decrease is not linear. The optimal equity share can stay flat for large wealth

intervals.

The literature on attitude towards timing risk is sparse and most applications

to real world problems are still to be explored. Chesson and Viscusi (2003) note

that the Expected Discounting Utility model leads to a counter-intuitive prefer-
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ence for timing risk. Several extensions accounting for timing risk aversion have

been proposed, like probability weighting (Onay and Öncüler, 2007), Epstein-Zin

preferences (Dillenberger, Gottlieb and Ortoleva, 2019) or Generalized Expected

Discounted Utility (GEDU), recently investigated in depth by Dejarnette et al.

(2020). The portfolio choice model assumes GEDU preferences, which are more

intuitive and tractable than Epstein-Zin preferences. The initial aim of these

preferences was to distinguish the coefficient of relative risk aversion from the

elasticity of intertemporal substitution in consumption. The latter is less rel-

evant in problems in which the consumption date, not the consumption level,

is uncertain. The GEDU model is also more in accordance with experimental

results than the probability weighting model (Dejarnette et al., 2020).

The remainder of the paper is organized as follows. Section 1 presents basic

facts about mean-variance trade-offs in the duration domain using long-term

US asset returns. Section 2 proposes a simplistic theory of portfolio choice by

replacing expectation and risk of return in the Markowitz model by expectation

and risk of duration. Section 3 goes beyond the static model and lays out a

dynamic portfolio choice model with GEDU preferences. Section 4 simulates the

model and interprets the results. Section 5 concludes.

1 Stylized facts on investment durations

I compare in this section duration statistical properties of two main security

classes covering the period 1871-2019: US equities and money market securities.

For equities, I use data from Cowles (1939) for the period 1871-1925, which

include between 12 (1871) and 258 (1925) value weighted securities listed on the

New York Stock Exchange. I use the S&P 90 index before 1957 and S&P 500

index afterwards. All returns are annualized, deflated by US CPI inflation rate,
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and include dividends.

For the market interest rate, I use short term bonds’ annualized rates of Shiller

(1989, 2015).1 It consists in the 6-month commercial paper rate published by

the Federal Reserve Board until 1997 and the 6-month certificate of deposit rate

from 1997 to 2012. The series are completed until early 2020 by data from

macrotrends.net and deflated by US CPI inflation rate.2

For brevity, the S&P 500 stock market index will be called “equities” and US

short-term bonds “bills”. Let us take the example of an investor whose initial

wealth is $1 and plans to fund a project worth $2. Figure 1 indicates how

many years are necessary to double wealth invested either in equities or bills.

Unsurprisingly, time intervals shorten during equity booms, as in the 1920’s or

at the end of the 2000’s, and lengthen during financial downturns, as in the first

years of the 1930’s or at the beginning of the 2000’s. The figure shows wide time

variations across initial investment dates. It took only 2 years to double wealth

invested in equities in 1927. Two years later, the same operation required 23

years.

Time intervals for bills were quite stable around 16 years until 1919, then

experienced a rapidly increase to 33 years in 1922, a short stabilization until

1933 and a slow-moving gradual decline to a low 6 years in 1979. Time intervals

rose again until 1994, which is the last investment date for which doubling wealth

were possible before the series’ end in 2019. Bills’ yields seem especially volatile

in periods of low returns during which even small variations entail large swings

in duration. This was the case between 1920 and 1940 during which average

yearly return was low (1.7%).
1Available in Shiller’s webpage http://www.econ.yale.edu/∼shiller/data.htm.
2Treasury bills would heave provided a better proxy for the riskless return than commercial

papers and certificate of deposits but were not available before 1920.
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I next quantify how the two assets compare in terms of mean duration and

time horizon risk. Table 1 presents summary statistics on time lengths required

to accumulate various final amounts of wealth starting with $1. Results are

summarized in five stylized facts.

Fact 1. Mean duration is around 60% longer with bills.

The “bill delay premium” (see Table 1) is the average additional delay ex-

pressed in percentage for investors to meet their wealth target when they invest

in bills rather than in equities. The gap is significant and may deter impatient

investors from investing in low-yield short-term bonds. Fact 1 is a consequence

of the historical equity risk premium. In the data, equity real returns are on

average 3.7% higher than bills’ returns.

Fact 2. Time horizon risk increases with target wealth.

The higher the wealth target relative to initial investment the more uncertain

the investment horizon, both with equities and bills. Fact 2 parallels the well-

known fact that final wealth risk increases with horizon.

Fact 3. Time horizon risk is higher for bills than equities.

Bills perform worse than equities with respect to both mean duration and

standard deviation, whatever target wealth. Fact 3 does not accord well with

mean variance portfolio theory according to which investors accept to buy high

risk assets in exchange of better expected returns. The classical mean variance

trade-off faced by target date investors does not seem to be a trade-off for target

wealth investors (more on this issue next section).

Bills’ underperformance is visually confirmed in Figure 1. The two assets’ risk

is of different nature however. Bills display extremely low frequency variations

with only one peak over the whole period, whereas equity’s risk is mainly driven
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by the business cycle.

Fact 4. Time horizon risk is positively skewed.

Duration skewness matters for time prudent investors. Ebert (2018) shows

in experiment that a large majority of subjects dislike positive skewness, a situ-

ation which appears when the duration distribution has a long and fat right tail.

Duration skewness is positive and decreases with target wealth both for equities

and bills. Since skewness is higher for bills than for equities for all target wealths,

bills are riskier on this dimension as well, which strengthens Fact 3.

Fact 5. Duration correlations between the two assets are negative.

Whatever target wealth levels, longer than average investment horizon for

one asset tends to be associated with shorter than average horizon for the other.

Correlations increase with target wealth, suggesting significant diversification

gains in mitigating duration risks, especially for high target wealth investors.

Negative correlations of durations mirror negative correlations between equities’

and bills’ yearly returns (−0.129 over the whole period).

Statistics on durations do not map exactly into statistics on returns. Mean

durations, duration variance and duration skewness depend on return statistics

but compounded over variable investment periods. Return risks are for instance

traditionally compared by computing return variance over a fixed time frame.

Since bills entail on average longer investment periods, duration variances are

computed over longer sequences of returns than equities. This partially explains

why bills are riskier than equities.
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2 Mean variance approach

The textbook mean variance portfolio choice model is a useful benchmark to

start with. It is analytically simple, delivers deep intuitions about risk-return

trade-offs or diversification, and allows insightful graphical interpretations. The

original model is framed in terms of final wealth but can be recast in terms of

durations where “mean” refers to mean duration, “variance” to duration variance

and return risk diversification to “horizon risk diversification”.

Let us assume that investors care only about expected duration E(t) and

duration standard deviation σ(t) with t the time length necessary to attain a

given target wealth. Investors’ utility function is U(E(t), σ(t)) with U1 > 0

(they prefer short durations) and U2 < 0 (they dislike duration spreads around

mean). I also assume the absence of a riskless asset and the stationarity of the

return process of the two assets. In particular, I make the strong assumption

that the means and variance-covariance matrix of annual real returns for bills

and stocks from 1871 to 2019 represent the distribution of future returns.

Figure 2 describes how duration first and second moments change when the

mix between the two assets varies. Duration is defined as the time length required

for wealth to double. The curve connects feasible portfolios in the mean/standard

deviation space when the equity share varies from 0 to 100% by steps of 5%. For

every equity share, rolling window statistics on historical durations are computed

over the period 1871-2019.

The curve is ellipse-shaped, as in classical Markowitz portfolio theory. The

bold part of the portfolio curve is equivalent to Markowitz’s efficient frontier in

the duration domain. It excludes the gray upper arc rejected by timing risk

averse investors. The minimum variance portfolio is composed for two thirds

of bills (65%) and one third of equities. As already noted, the 100% equity
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portfolio dominates the 100% bill portfolio both in terms of expected duration

and standard deviation. This does not mean however that the optimal portfolio

should not include bills. Table 1 shows strong negative correlations between

equities’ and bills’ durations, indicating that investors may achieve substantial

horizon risk diversification. Starting from the all-equity portfolio, for which

duration standard deviation is 6.1, reducing equity share decreases horizon risk

by a significant margin, down to 3.7 if investors buy the minimum variance

portfolio.

Efficient portfolios involve a substantial share of equities with a minimum

of 35%. The figure indicates as an illustration a possible optimal portfolio P,

composed of 55% of equities and for which investors’ indifference curve (IC) is

tangent to the portfolio curve. The efficient frontier looks relatively flat beyond

P, which suggests that only investors sufficiently tolerant to timing risk would

be willing to invest a larger fraction of their wealth in equities.

Figure 3 plots feasible portfolios in the mean/standard deviation space for

target wealths ranging from $1.5 to $4, stating with $1. Mean durations and du-

ration risks are both increasing with target wealth, but mean duration increases

visually faster than duration risk. Long-term investors (with high target wealth)

face higher duration risk than short-term investors but only by a modest margin.

Table 2 illustrates the point by focusing on minimum variance portfolios.

Those portfolios are an interesting reference as all risk averse investors choose

a higher equity share. Duration standard deviation is barely increasing with

target wealth. Switching from a target wealth of $1.5 to $4 corresponds to a

166% money goal increase and a 188% increase of mean duration (from 8.5 to

24.1 years), but a modest 25% increase in duration standard deviation (from

3.2 to 4.0). In accordance with this pattern, minimum variance equity share

increases with target wealth, starting from 32% for a target wealth of $1.5, to
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47% for a target wealth of $4. Those results suggest that the optimal equity

share is likely to decrease with distance to target wealth, a property confirmed

next section.

Overall, the mean variance approach shows strong horizon risk diversification

benefits, points to significant shares of equities and suggests large time diversi-

fication gains associated with higher wealth target and longer investment time

horizon.

3 Portfolio choice with Generalized Preferences

The mean-variance portfolio choice model catches basic intuitions about efficient

portfolios in presence of duration risk. Like the original Markowitz model how-

ever, it is not fully dynamic (investors cannot vary their portfolio share over time)

and assumes ad hoc preferences. The next sections investigate an intertemporal

model of portfolio choice with better founded preferences.

3.1 Generalized Expected Discounted Utility

Let us define the set of dates T = {0, 1, ..., τ}. Intertemporal utility is defined

over consumption streams C = (c(0), c(1), ..., c(τ)):

U(C) =
∑
T

D(t)u(c(t)) (1)

with u a strictly increasing and continuous function from [c, c̄] ⊂ R+ to R+ and

D a strictly decreasing function from T to [0, 1].

Consumption risks are represented, without loss of generality, as risks over

consumption streams C, which in turn makes intertemporal utility uncertain.
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Generalized Expected Discounted Utility (GEDU) preferences3 assumes that in-

dividuals depart from risk neutrality when dealing with intertemporal utility

uncertainty, and maximize Eφ(U(C)), where φ is a strictly increasing function

from U(C) to R.

The GEDU representation is useful to disentangle attitude towards intertem-

poral consumption smoothing, captured by curvature of u, from attitude towards

date t consumption risk, captured by curvature of φ ◦ (D(t)u). The shape of the

discount function D, which governs impatience, also affects risk preferences when

the consumption date is uncertain through the curvature of φ ◦ (Du(w)), with

w a fixed consumption level. The fact that φ influences both aversion to static

consumption risk and aversion to consumption timing risk is in accordance with

experimental evidence (see Dejarnette et al., 2020).

GEDU preferences are particularly fitted to study how individual value con-

sumption date risk when consumption is fixed and only the consumption date

is random. In this case, preferences simplifies to Eφ(D(t)u(c)). In the EDU

model (or the GEDU model with φ affine), D(t) governs both impatience and

attitude towards timing risk. There is no compelling reason why preferences

in two distinct domains should be determined by the same functional. In fact,

EDU implies a counter-intuitive preference for random timing under the weak

assumptions that D(t) is decreasing and convex. Dejarnette et al. (2020) find

in experiment that the vast majority of subjects are averse toward timing risk,

i.e. prefer a sure delivery date than a mean preserving random date, which

contradicts the EDU model.
3The representation is an application of the multi-attribute function of Kihlstrom and Mir-

man (1974) to the context of time. The term GEDU has been coined by Dejarnette et al.
(2020). See also Dillenberger, Gottlieb and Ortoleva (2019).
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3.2 Investment strategy

There are two assets in the economy: equities, which period s return is Rr
s and

fixed income assets, which return is Rf
s . Given a temporal sequence of equity

shares (α0, α1, ..., αt−1), portfolio’s cumulative return factor between dates 0 and

t is:

R0→t(α0, α1, ..., αt−1) =
t−1∏
s=0

(
αsR

r
s + (1− αs)Rf

s

)
(2)

The model allows investors to dynamically rebalance their portfolio. They

choose αs at the beginning of every investment period s and anticipate that their

portfolio will be optimally rebalanced in future dates. I abstract from transac-

tions costs and forbid borrowing or short sales. I make the simplifying assumption

that asset returns are independently distributed over time. Bills’ and equity’s real

returns are actually serially correlated in the data4, which could make possible to

predict future return based on past returns, and to condition equity share on this

information. How does return predictability affect optimal portfolio choice would

deserve a separate extension which is left for future research. The assumption of

serial independence does not mean that the set of investment opportunities is the

same every period however. As cumulated wealth gets closer to target wealth,

investment opportunities may vary, which may affect the optimal equity share.5

Investors make a one-time contribution w < 1 at date 0 and wait until their

wealth attains $1. They first choose the equity share α0 which maximizes their
4Many studies find that expected stock returns are countercyclical. See e.g. Fama and

French (1989), Ferson and Harvey (1991), Harrison and Zhang (1999), or Golez and Koudijs
(2018).

5A similar reasoning holds for target date strategies in which the exit date is fixed and final
wealth is uncertain. As the final date approaches, the distribution of cumulated final return
changes, and so does optimal equity share. The equity share remains constant only for constant
relative risk aversion investors with a fixed interest rate (Samuelson, 1969, Merton, 1969).
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expected discounted utility of wealth:

max
α0

τ∑
t=0

πt(α0, α
∗
1, ..., α

∗
t−1)φ

(
D(t)u(1)

)
(3)

where α∗1, ..., α∗t−1 are optimal equity shares at dates 1 until t− 1, which are the

argmax of the same maximization problem considered at later time points. πt(.)

is the probability that accumulated wealth reaches $1 at date t for the first time:

πt(α0, α1, ..., αt−1) = Prob
[(
R0→1(α0)w < 1

) ⋂(
R0→2(α0, α1)w < 1

) ⋂
...

⋂(
R0→t−1(α0, α1, ..., αt−2)w < 1

) ⋂(
R0→t(α0, α1, ..., αt−1)w ≥ 1

)]
(4)

Conditional on target wealth w still to be reached, date s > 1 optimal equity

shares are chosen the same way s periods forward.

Program (3) ignores the possibility that investors may outreach their target

and eventually consume more than $1. For now, I will assume that the investment

unit period is sufficiently short so that the assumption of constant utility may

be acceptable. This issue is more rigorously addressed in the simulation method

presented in Appendix by introducing fractional investment dates.

4 Simulated Portfolio choice

This section presents how the portfolio choice model is simulated based on the

dataset used in Sections 1 and 2.

4.1 Functionals

I assume common functionals for φ and D. For riskless intertemporal trade-offs,

investors are exponential discounter: D(t) = βt. For intertemporal utility trade-
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offs, φ takes a constant relative risk aversion form with risk aversion parameter

γ > 0:

φ(U) = U1−γ

1− γ

for γ 6= 1, and φ(U) = ln(U) for γ = 1. The target wealth strategy (3) writes :

max
α0

τ∑
t=0

πt(α0, α
∗
1, ..., α

∗
t−1)β

t(1−γ)

1− γ (5)

with normalization u(1) = 1 and πt(.) defined in (4). In the case γ = 1, investors

are risk neutral with respect to consumption timing, as can be seen from their

maximization program:

max
α0

ln(β)
τ∑
t=0

πt(α0, α
∗
1, ..., α

∗
t−1) t

Impatient investors (β < 1 or ln(β) < 0) minimize expected duration regard-

less of duration’s dispersion. If φ is more concave than log (γ < 1)6, investors

are timing risk averse (Dejarnette et al., 2020). They seek mean preserving date

randomization if φ is less concave than log (γ > 1).

Because the only source of uncertainty is the consumption date, portfolio

choice does not depend on static risk aversion captured by period utility u.

Moreover, under the assumption that financial returns are serially uncorrelated,

it does not depend on past returns either. A distance effect, expressed as a

function of the remaining gap between current and target wealth, may neverthe-

less exist. Mean-risk trade-off for consumption date depends on how far current

wealth is from its target. The optimal target wealth portfolio choice is a timeless

function α(x) from [w0, 1) to [0, 1] which gives for each current wealth x the op-

timal portfolio’s equity share. The simulation method is presented in Appendix.
6The function φ is more concave/convex than log if φ = f ◦ ln for some concave/convex f .
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4.2 Calibration

Two behavioral parameters are assigned numerical values. The discount factor is

set to 0.953 to match the average real annualized riskless rate of 4.88% computed

from Shiller’s dataset over the period 1871-2019.

The relative risk aversion coefficient (RRAC) γ drives aversion toward in-

tertemporal utility risk. Although values for the RRAC in the context of static

consumption risks are extensively documented, this is not the case in the do-

main of intertemporal utility risk. In accordance with experimental results of

Dejarnette et al. (2020), I restrict the analysis to the case of timing risk aversion

(γ ≥ 1) and select a broad range of values between 1 and 31.

4.3 Results

Figure 4 shows optimal equity shares given relative distance between current and

target wealth. The stronger the risk aversion parameter γ, the smaller the equity

share. Risk neutral investors characterized by γ = 1 stay close to 100% for a

large wealth interval. In contrast, investors with strong aversion to intertemporal

utility risk (γ ≥ 6) are heavily invested in bills. Investors with intermediate level

of risk aversion (γ between 2 and 5) choose a more balanced portfolio.

In addition, the equity share substantially varies with relative distance to

target wealth, which supports the existence of a distance effect, reminiscent of

the time horizon effects in target date strategies (Barberis, 2000). Investors

reduce their equity share when their accumulated wealth approaches the target,

but in a non linear manner. The equity share starts from 100% for moderately

risk averse investors (γ between 1 and 3) far from their target. Equity shares

plateau over a wide range of wealths for all risk aversion levels, before converging
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to zero close to the target. The convergence to zero equity is explained by the

fact that investors bear the downside cost but do not benefit from the upside

beyond the wealth target.7

The influence of the discount factor on portfolio choice is illustrated in Figure

5 where γ is set to 11. The time discounting parameter β takes several values

ranging from 0.900 to 0.999. We observe a similar pattern of risk profiles with a

broad plateau before a convergence to zero equity. The less impatient, the more

willing investors are to invest in risky assets. Investors close to time neutral-

ity (β = 0.999) invest nearly 100% of their wealth in equities before gradually

disinvesting. More impatient investors invest modest amounts in equities. To

understand why, recall that impatient investors would like to consume sooner

than later. This fosters the demand for equities and entails shorter average de-

lays than bills. However, impatience also makes investors more risk averse in

presence of consumption date uncertainty. The second effect dominates the first

one and makes impatient investors reluctant to invest in equities.

5 Conclusion

Many households pursue a personal goal when they invest, like buying a house

or a car, and doing so, target a final wealth. This paper studies the case in which

investors fully commit to their money goal and face an uncertain investment time

horizon. Several interesting results emerge based on US long-term return data.

First, fixed income assets do not appear to be less risky than equities in the du-

ration domain. Since fixed income assets have low returns, small variations may

trigger large and long-lasting swings in durations. Second, a CAPM-like model of
7Investing in equity near the target is much like being the owner of a debt contract in an

equity fund.
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portfolio choice graphically shows how duration risk can be substantially reduced

by adding a significant share of equities in the portfolio. This illustrates another

benefit of portfolio diversification beyond its ability to reduce return risk. Third,

investors stay away from equities out of risk aversion, but also of impatience, as

more impatient investors are more sensitive to horizon risk. Fourth, the optimal

risk management strategy derived from a dynamic model of portfolio allocation

consists in decreasing the equity share with relative distance to target wealth.

The decrease is non-linear with a broad intermediate wealth range over which

the equity share remains approximately constant. Those results provide a useful

guide to financial planners who counsel households committed to a money goal.

From a regulatory perspective, the risk profiling questionnaire should specifically

assess investor’s willingness to take timing risk and their propensity to wait, be-

sides their tolerance to financial risk.

Several extensions of this study would be worth exploring. In the CAPM-like

model, it would be interesting to add additional assets, like bonds or equities

sorted by book-to-market or size. A risk-free rate could also be introduced.

Investigating the issues of the existence of a market portfolio and a two-fund

separation theorem would constitute an important step for future research. Price

multiples such as the dividend-to-price ratio predict future return (e.g. Golez

and Koudijs, 2018) but could also predict future investment durations. It would

be interesting in the dynamic portfolio model to condition the equity share not

only on the relative distance to target wealth, but also on a well-chosen financial

ratio.
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Appendix

Simulation method for target wealth strategy

To find the optimal equity share α(x), conditional on current wealth x, I define

V (x), the expected intertemporal utility for wealth x. Let f(R(α)) be the density

function of investor’s yearly portfolio return conditional on equity share α. V (x)

is defined recursively as the expected discounted value of capitalized wealth one
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period ahead:

V (x) = max
α

∫ R̄

R
β1−γ V (R(α)x)f(R(α))dR(α) (6)

whereR and R̄ denote minimum and maximum portfolio returns. Target wealth’s

value is normalized to V (1) = 1/(1 − γ). Since last period compound wealth

may actually be greater than target wealth, we need to adjust at the margin the

consumption date. The more wealth in excess at date t, the earlier investors can

sell and consume before t, but still after t− 1 since by assumption x < 1. Excess

wealth ratio is defined as:

ε(α) = R(α)x− 1
R(α)x− x ∈ [0, 1)

The date advancement is assumed to be proportional to excess wealth ratio:

V (R(α)x) = β−(1−γ)ε(α)V (1) (7)

As an illustration, suppose that last period return R(α)x− x is $0.036 from

which excess wealth is R(α)x − 1 = $0.009. Excess wealth ratio is ε(α) = 0.25.

Under the proportionality assumption, consumption takes place 3 months in

advance of date t.

Current wealth x is discretized over a fine and equally spaced grid W =

[w0, w0 + ε, ..., 1− ε, 1] where ε is the unit interval length and w0 is wealth’s lower

bound. The value function (6) is discretized and becomes:

V (x) = max
α

∑
y∈W

Prob
(
Rs(α)x = y

)
β1−γ V (y) (8)

with V (y) defined by (7) if wealth overshoots its target (y = Rs(α)x ≥ 1).

The maximization problem is solved downward, starting from x = 1− ε. For

any wealth level x, most next period values V (y) satisfy y = Rs(α)x > x and

22



have been estimated in earlier steps of the downward simulation. Values V (y)

satisfying y = Rs(α)x > 1 are determined by (7). In periods with negative return

(y = Rs(α)x < x), V (y) is unknown in the first iteration. It is approximated by

solving a simpler portfolio choice problem in which the equity share is optimized

conditional on current wealth x but remains constant in subsequent periods.

With estimated values V (y), the maximization problem (8) is solved by com-

puting the sample mean:

V (x) = max
α

1
N

N∑
h=1

β1−γ V
(
Rh(α)x

)
(9)

with Rh(α) = αRr
h+(1−α)Rf

h year h portfolio return. The optimal equity share

α(x) maximizes V (x) over A for every x over W . Because V (y) is only roughly

estimated in the fist round when y < x, several rounds are needed until V (y)

converges to stable values.

In simulations, the space of current wealth W contains 800 values with w0 =

0.2 and ε = 0.001. When x is close to the lower bound w0, next period wealth

y = Rh(α)x can sometimes be lower than w0. In those cases V (y) is artificially set

to V (w0). Because downside risk is muted, this convention biases α(x) upward

for x in the neighborhood of w0. This is why all equity shares computed for

x ∈ [0.2, 0.25) are discarded in the results. Extensive testing shows that the bias

is significant in the close neighborhood of 0.2 but vanishes with a good safety

margin above 0.25.
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Figure 1: Number of years to double wealth, US 1871-2019

Notes. The graphic indicates how many years are necessary to double initial
wealth by investing either in equities or bills for starting years beginning in 1871
and ending in 2015. Some points are missing after 2000 as wealth does not double
before the last year in the dataset.
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Table 1: Summary statistics for equity and bills, US 1871-2019

Target wealth for $1 invested 1.25 1.5 2 2.5 3 3.5 4

Equities

Mean duration 4.5 7.3 11.2 13.8 16.3 18.6 20.4

Duration standard deviation 4.0 5.1 6.0 6.3 6.5 7.0 6.9

Duration skewness 1.6 1.07 0.60 0.47 0.31 0.20 0.02

Number of rolling windows 147 142 128 126 125 124 124

Bills

Mean duration 7.1 11.5 18.0 22.8 26.7 30.0 32.9

Duration standard deviation 4.7 6.3 8.1 9.0 9.8 10.3 10.9

Duration skewness 1.7 1.37 0.98 0.68 0.45 0.26 0.12

Number of rolling windows 136 128 123 118 115 113 113

Bill delay premium (%) 58 58 61 65 64 61 61

Duration correlation -0.08 -0.15 -0.19 -0.29 -0.31 -0.36 -0.33

Notes. The table presents statistics about durations required to convert $1 into
a final wealth ranging from $1.25 to $4. The bill delay premium is the addi-
tional delay expressed in percentage imposed by bills compared to equities. As
durations vary across assets, duration correlations are computed for a common
investment starting period.
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Figure 2: Duration mean variance frontier and optimal portfolio

Notes. The graphic indicates feasible portfolios in the duration mean variance
space for equity shares varying from 0 to 100% by step of 5%. Computation of
durations needed to double wealth is based on US data, 1871-2019. The efficient
frontier holds for investors preferring shorter durations and lower duration risk.
Portfolio ’min var’, the minimum variance portfolio, is composed of 55% of equity.
P, a possible optimal portfolio given indifference curve IC, has 65% of equity.
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Figure 3: Duration mean variance curves for various target wealths

Notes. The graphic indicates feasible portfolios in the duration mean variance
space for equity shares varying from 0 to 100% by step of 5% and various target
wealths, starting with $1. Computation of durations is based on US data, 1871-
2019.
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Table 2: Summary statistics for minimum variance portfolios, US 1871-2019

Target wealth for $1 invested 1.5 2 2.5 3 3.5 4

Mean duration 8.5 12.9 16.8 19.3 21.9 24.1

Duration standard deviation 3.2 3.7 3.9 3.9 4.1 4.0

Share of equities (%) 32 38 36 44 44 47

Notes. The table presents statistics and equity shares of minimum variance
portfolios for target wealths ranging from $1.5 to $4, starting with $1.
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Figure 4: Optimal equity share as a function of distance to target wealth and risk
aversion

Notes. The graphic indicates optimal equity shares in function of the relative
gap between current and target wealth. Wealth in horizontal axis goes from
25% to 100% of target wealth. The discount factor is β = 0.953. The relative
risk aversion coefficient γ takes values ranging from 1 to 31. Simulated shares
are affected by small high-frequency noise, which is smoothed out by plotting a
centered moving average over a narrow rolling wealth interval of 0.02.
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Figure 5: Optimal equity share as a function of distance to target wealth and
time discounting

Notes. The graph indicates optimal equity shares in function of the relative
gap between current and target wealth. Wealth in horizontal axis goes from
25% to 100% of target wealth. The risk aversion coefficient is γ = 11. The
annual time discounting coefficient β takes values ranging from 0.900 to 0.999.
Simulated shares are affected by small high-frequency noise, which is smoothed
out by plotting a centered moving average over a narrow rolling wealth interval
of 0.02.
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