Pricing Default Events: Surprise, Exogeneity and Contagion

C. GOURIEROUX, A. MONFORT, J.-P. RENNE

BdF-ACPR-SoFiE conference, July 4, 2014

- When investors are averse to a given risk, a security whose payoffs are exposed to this risk are less valuable than those whose payoffs are not.
- A defaultable bond exposes its holder to two risks:
 - (a) the risk that future probabilities of default change,
 - (b) the risk that the bond issuer effectively defaults.
- In order to derive closed form expressions of the prices of credit derivatives, most reduced-form models of credit risk "price" risk
 (a) but not the default events themselves (risk (b)).
- That is, they implicitly consider that investors are not averse to the default-event surprise (or that these surprises can be diversified away).

- A few papers mention this approximation and try to take into account the surprise, e.g.:
 - Jarrow, Yu (2001, JoF) ["Counterparty Risk and the Pricing of Defaultable Securities"]. For 2 debtors only.
 - A series of paper by Bai, Collin-Dufresne, Goldstein, Helwege (2013), with a very specific modeling of default dependence.
- In general:
 - Default dependence is difficult to specify.
 - Derivative prices have no closed-form expressions.

- This paper solves this problem for credit derivatives (CDS and CDO) written on a pool of credits, which can be partitioned into J "large" homogenous segments.
- The model accommodates different forms of contagion:
 - exposure to common factors (frailty);
 - self-exciting defaults;
 - contagion across sectors.
- Based on U.S. bond data, an application illustrates that this feature provides an explanation for the so-called *credit-spread* puzzle.

Outline of the presentation

- 1. Introduction.
- 2. The standard reduced-form approach and its limitations.
- 3. Modeling Framework and Derivative Pricing.
- 4. Applications.

The Standard Approach and its Limitations

2. The Standard Approach and its Limitations

Notations

- \blacksquare A pool of I entitites i = 1, ..., I.
- Default indicators $d_{i,t}$:

$$d_{i,t} = \left\{ egin{array}{ll} 1 & \quad ext{if entity } i ext{ is in default at date } t, \\ 0 & \quad ext{otherwise.} \end{array}
ight.$$

- n_t the number of defaults occurring at date t.
- Arr $N_t = \sum_{\tau=1}^t n_{\tau}$ the cumulated number of defaults.

Assumptions on the historical distribution

- i) Homogenous portfolio The default indicators $d_{i,t+1}$ are independent, identically distributed given F_{t+1} , d_t .
- ii) Default dependence driven by FThis conditional distribution depends on factor F_{t+1} only.
- iii) F is exogenous

 The conditional distribution of F_{t+1} given $(\underline{F_t}, \underline{d_t})$ is equal to the conditional distribution of F_{t+1} given F_t .

Remark: (i) and (ii) will be relaxed in our general model.

The standard pricing approach

Assumption on the stochastic discount factor:

$$\tilde{m}_{t,t+1} = \tilde{m}(F_{t+1}).$$

■ Then the price of a payoff $g(N_{t+h})$ at date t is:

$$\tilde{\Pi}(g,h) = E_t[\tilde{m}_{t,t+1} \dots \tilde{m}_{t+h-1,t+h}g(N_{t+h})]$$

$$= E_t[\tilde{m}_{t,t+1} \dots \tilde{m}_{t+h-1,t+h}\tilde{g}(\underline{F_{t+h}})],$$

where :
$$\tilde{g}(\underline{F_{t+h}}) = E[g(N_{t+h})|\underline{F_{t+h}}].$$

■ Therefore : $\tilde{\Pi}(g,h) = \tilde{\Pi}(\tilde{g},h)$.

 \Rightarrow It is equivalent to price $g(N_{t+h})$ or to price its prediction $\tilde{g}(F_{t+h})$.

Risk premia associated with default events

- What is the change in pricing formula, when $m_{t,t+1} = m(F_{t+1}, n_{t+1})$?
- Let us consider the projected sdf:

$$\tilde{m}_{t,t+1} = E[m(F_{t+1}, n_{t+1})|F_{t+1}].$$

Then:

$$\Pi(g,h) = \underbrace{\tilde{\Pi}(g,h)}_{} + \underbrace{\Pi(g-\tilde{g},h)}_{}.$$

standard the price of formula surprise

Relaxing the exogeneity assumption

- New assumption: The conditional historical distribution of F_{t+1} given $\underline{F_t}$, $\underline{d_t}$ is equal to the conditional distribution of F_{t+1} given F_t , n_t .
- A more complete decomposition of the derivative price :

$$\begin{array}{lclcrcl} \Pi(g,h) & = & \tilde{\Pi}(g,h) & + & [\Pi(\tilde{g},h) - \tilde{\Pi}(\tilde{g},h)] & + & \Pi(g - \tilde{g},h) \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

Moreover, we show that the standard formula for pricing a corporate zero-coupon bond:

$$B(t,h) = (E_t^{Q}[\exp(-r_t \dots - r_{t+h-1}) \mathbf{1}_{d_{i,t+h=0}}])$$

$$= E_t^{Q}[\exp(-r_t \dots - r_{t+h-1} - \lambda_{t+1}^{Q} \dots - \lambda_{t+h}^{Q})],$$
and the used in general

cannot be used in general.

Default intensities

■ If $\Omega_t^* = (F_{t+1}, \underline{d_t})$, the historical intensity λ_{t+1} is defined by:

$$P(d_{t+1} = 0 | d_t = 0, \Omega_t^*) = \exp(-\lambda_{t+1}).$$

■ The risk-neutral intensity λ_{t+1} is defined by:

$$Q(d_{t+1} = 0|d_t = 0, \Omega_t^*) = \exp(-\lambda_{t+1}^Q),$$

■ If $m_{t,t+1} = \exp(\delta_0 + \delta_F' F_{t+1} + \delta_S n_{t+1})$, the risk-neutral intensity is:

$$\lambda_{t+1}^{Q} = \lambda_{t+1} + \log\{\exp(-\lambda_{t+1}) + [1 - \exp(-\lambda_{t+1})] \exp(\delta_{S}).\}$$

Modeling Framework and Derivative Pricing

3. Modeling Framework and Derivative Pricing

- To get (quasi) closed form expressions for derivative prices, we need affine processes.
- The joint process $(d_{1t}, ..., d_{lt}, F_t)$ cannot be affine, but the aggregate process (n_t, F_t) can be if the size of the homogenous pool is large.

Assumptions

(a) A Poisson regression model for the default count:

$$n_{t+1}|F_{t+1}, \underline{n_t} \sim \mathcal{P}(\beta_F'F_{t+1} + \beta_n n_t + \gamma);$$

(b) The conditional Laplace transform of F_{t+1} given $\underline{F_t}$ is exponential affine in (F_t, n_t) :

$$E_t[\exp(v'F_{t+1})] = \exp[a_F(v)'F_t + a_n(v)'n_t + b(v)];$$

(c) The s.d.f. is exponential affine in both F_{t+1} and n_{t+1} :

$$m_{t,t+1} = \exp(\delta_0 + \delta_F' F_{t+1} + \delta_S n_{t+1}).$$

- In that setup, (F_t, n_t) is jointly affine.
- Then the price at date t of any exponential payoff $\exp(uN_{t+h})$ can be derived by recursion.
- Since the pool is homogenous, we know also how to price:
 - individual default d₁ (single name CDS),
 - joint defaults d₁d₂....
- Indeed:

$$\Pi(d_1 \dots d_K, h) = \frac{1}{I(I-1)\dots(I-K+1)} \left[\frac{d^K}{dv^K} \Pi(\exp(N \log v), h) \right]_{v=1}.$$

■ The price of a non-exponential payoff deduced by Fourier transform [Duffie, Pan, Singleton (2000)]: CDO pricing, tranches.

Extension: Heterogeneous pools

- The pool can be partitioned into J homogenous pools, with different risk characteristics.
- For corporations, the segment can be defined by the industrial sector, by the size, by the domestic country, but the rating cannot be used since it is time-varying.
- $n_{j,t}$, j = 1, ..., J denote the numbers of defaults in each segment, conditionally independent :

$$n_{j,t+1} \sim \mathcal{P}[\beta'_j F_{t+1} + C'_j n_t + \gamma_j], j = 1,\ldots,J.$$

⇒ Additional contagion channel: across sectors.

Pricing Default Events: Surprise, Exogeneity and Contagion

☐ Illustrations

4. Illustrations

An illustration with six homogenous segments of size 100.

• Two types of factors:

 $F_{B,t}$ a sequence of i.i.d. Bernoulli variables

 $F_{N,t}$ processes keeping memory of past default counts in each segment

$$F_{N,j,t} = \rho F_{N,j,t-1} + n_{j,t-1}, j = 1, \dots, 6.$$

 The distribution of the count variables with a circular structure of the network:

$$n_{1,t+1} \sim \mathcal{P}(0.4F_{N,6,t} + F_{B,t}), n_{j,t+1} \sim \mathcal{P}(0.4F_{N,j-1,t}), j = 2, \dots, 6.$$

- The next figure gives the evolutions of factors and default counts.
- A high value of factor F_B may immediately generate defaults in segment 1.
- These defaults propagate to the other segments by contagion.

The next figure displays the term structures of:

- the CDS premium,
- the CDS without pricing the surprise,
- the actuarial value (physical probability)

for two dates and segments.

- Credit-spread puzzle: observation of a wide gap between
 - (a) Credit Default Swap (CDS) spreads, that can be seen as default-loss expectations under the risk-neutral measure, and
 - **(b)** expected default losses (under *P*).
 - ⇒ See e.g. D'Amato, Remolona (2003), Hull, Predescu, White (2005).
- Standard credit-risk models, that do not price default-event surprises, deal with the credit-risk puzzle by incorporating credit-risk premia. But these premia are too small for short maturities.
- We show that pricing default-event surprises may solve the credit-puzzle for all maturities, including the shortest ones.

- We calibrate our model on U.S. banking-sector bond data covering the last two decades.
- Specifically, we consider riskfree (Treasury) bonds and bonds issued by U.S. banks (1995-2013), rated BBB.
- Our results suggest that neglecting the pricing of default events is likely to result in an overestimation of model-implied physical probabilities of defaults for short-term horizons.

	$\delta_{F,1}$	$\delta_{F,2}$	$\delta_{F,3}$	$\delta_{F,4}$	$\delta_{\mathcal{S}}$	δ_0
M1	1	-0.974	3.045	-5.063	1.163	-0.044
M2	1	-0.972	5.681	-5.589	-	-0.081
	μ_{1}	$ u_{1}$	$ ho_1$	μ_{2}	ν_2	ρ_2
111	4	0.000	0.05	0.400	0.004	0.05
M1	1.55	0.022	0.95	0.428	0.004	0.95

- M1 (resp. M2) is the model pricing the default-event surprise, i.e. with $\delta_S \neq 0$ (resp. $\delta_S = 0$).
- $F_{1,t}$ and $F_{2,t}$ follow independent ARG processes $[(\mu_1, \rho_1, \nu_1)]$ and (μ_2, ρ_2, ν_2) , respectively].
- The sdf is given by $m_{t,t+1} = \exp(\delta_0 + \delta'_F F_{t+1} + \delta_S n_{t+1})$ where $F_t = [F_{1,t}, F_{1,t-1}, F_{2,t}, F_{2,t-1}]'$.
- The conditional distribution of n_t given F_t , n_{t-1} is Poisson $\mathcal{P}(F_{2,t})$.
- Calibration is carried out to reproduce a set of unconditional moments derived from observed data (fitted moments on next slide).

Panel A - Unconditional moments (means / standard deviations

S: Sample, M1: model pricing the surprise, M2: model not pricing the surprise.

	Treasuries (riskfree) yields				Spreads (Banks vs. Ireas.)			Correlations			
	1 mth	1y	Зу	5у	1y	Зу	5у	1y	Зу	5y	
ω	50	50	50	50	100	100	100	0.05	0.05	0.05	
S	2.7/2.1	3.1/2.2	3.5/2.0	3.9/1.8	2.0/1.6	2.5/1.8	2.8/2.0	-60	-70	-65	
M1	2.7/2.2	3.1/2.1	3.6/1.9	3.9/1.8	1.7/1.9	2.3/1.8	3.1/1.8	-65	-65	-65	
M2	2.6/1.7	3.1/1.7	3.8/1.8	3.8/2.3	0.6/0.9	1.3/1.3	2.6/2.4	-47	-54	-70	

Panel B - Time-series fit (MSE divided by series variances, in %)

	Treasuries (riskfree) yields				Spread	Spreads (Banks vs. Treas.)			
	1 mth	1y	Зу	5y	1y	Зу	5y	_	
M1	8.6	2.8	0.2	3.1	11.1	1.2	7.2	_	
M2	16.3	9.2	1.0	36.3	57.8	19.5	24.2		

- M1 and M2 are estimated by weighted-moment methods (weights provided in row ω).
- Model M1 is better than M2 at reproducing sample moments, especially at the short-end of the term structure of spreads.
- Panel B reports the ratios of mean squared pricing errors (MSE) to the sample variances of corresponding yields/spreads.
- ⇒ Pricing errors obtained with M1 are far lower than those associated with M2.

Conclusion

6. Conclusion

- Standard approaches of credit-risk pricing neglect default-event surprises.
- This paper proposes a tractable way to price these surprises.
- In our framework, quasi-closed-form expressions for derivative prices still exist if the sizes of the homogenous segments are sufficiently large.
- The specification accommodates different forms of contagion.
- An empirical analysis suggests that models pricing default-event surprises can generate sizable credit-risk premia at the short end of the yield curve and, hence, can solve the credit-risk puzzle.

Conclusion

Appendix

- If F_t is exogenous under P and $\delta_S \neq 0$, F_t is no longer exogenous under Q.
- The intensity $\lambda_{i,t}$ is a pre-intensity if:

$$P(\tau_i > t + h|\tau_i > t, \Omega_t^*) = E\left(\prod_{k=1}^h \exp(-\lambda_{i,t+k})|d_{i,t} = 0, \Omega_t^*\right)$$

with $\tau_i = \inf\{t : d_{i,t} = 1\}.$

- If F_t is exogenous (under P), then $\lambda_{i,t+1}$ is a pre-intensity.
- If $\delta_S \neq 0$, F_t is not exogenous under Q (even if it is exogenous under P) then $\lambda_{i,t+1}^Q$ is not a pre-intensity, and the standard formula for B(t,h) is not valid.

In fact, the pricing formula becomes:

$$B(t,h) = \stackrel{Q}{E_t} \left[\exp(-r_t \dots - r_{t+h-1} - \tilde{\lambda}_{t+1,t+h}^Q \dots - \tilde{\lambda}_{t+h,t+h}^Q) \right],$$

where

$$\tilde{\lambda}_{t+1,t+h}^{Q} = -\log Q(d_{t+1} = 0|d_t = 0, F_{t+h})$$

is doubly indexed, with the interpretation of a "forward" intensity.

Homogenous model

• Factor: $F_t = (F_{1,t}, F_{1,t-1}, F_{2,t})$, where $(F_{1,t})$ and $(F_{2,t})$ are independent Autoregressive Gamma (ARG) processes.

A lagged value of F_1 is introduced to get more flexible specifications of the s.d.f. and of the term structure of the yields.

• Parameter β is set in order to get : $n_t | F_t \sim \mathcal{P}(F_{2,t})$

The short term rate is:

$$r_t = K_0 + K_F' F_t$$

where the coefficients K_0 , K_F depend on the parameters characterizing the ARG dynamics, on the β , and on the parameter in the s.d.f. to ensure the AAO.

The next figure provides the evolutions of:

- \blacksquare the factors F_1, F_2 ,
- the short-term rate,
- the defaultable bond rate for the maturity h = 20,
- the spread between the latter and its "riskfree" counterpart (same maturity).

37/31

- The next figure compares:
 - the (forward) CDS price,
 - this price without pricing the surprise,
 - the cumulated probability of default.
- (Forward) CDS prices to avoid the discounting effects that are implicit in the standard CDS pricing formula.
- Note that the forward CDS prices are not exactly equal to the risk-neutral probability of default.
- ⇒ About half of the total credit-risk premia are accounted for by the credit-event risk premia.
- ⇒ This proportion weakly depends on the time-to-maturity.

39/31