Is a Money-financed Fiscal Stimulus Desirable?

Chiara Punzo¹, Lorenza Rossi²

June 2021, WP 818

ABSTRACT

We analyse the redistribution channel of a money-financed versus debt-financed fiscal stimulus in a Borrower-Saver framework. The redistribution channel is larger when we consider a money-financed fiscal stimulus. However, it generates also larger welfare losses than a debt-financed fiscal stimulus, particularly in a borrower-saver framework due to the additional presence of the consumption gap with respect to a representative agent model.³

Keywords: Borrowers-Savers; Fiscal Stimuli; Welfare; Fiscal Multipliers

JEL classification: E3; E5; E62

¹ Banque de France chiara.punzo@banque-france.fr
² University of Pavia, lorenza.rossi@unipv.it
³ Acknowledgments and disclaimer: We are very grateful to Guido Ascari, Florin Bilbiie, Andrea Boitani, Fabrice Collard, Davide Debertoli, Jordi Gali, Tommaso Monacelli and Salvatore Nistico for very helpful feedback and discussions. We also thank participants to 22nd Conference on Theories and Methods in Macroeconomics, 24th Conference on Computing in Economics and Finance, the 5th Macro, Banking and Finance Workshop, the Conference on Finance and Economic Growth in the Aftermath of Crisis, the 22nd Annual Workshop on Economic Science with Heterogeneous Interacting Agents, the Catalan Economic Society Conference, the 8th RCEA Macro-Money-Finance Workshop and the XXV Rome Conference on Money, Banking and Finance. Potential errors are our own.

Working Papers reflect the opinions of the authors and do not necessarily express the views of the Banque de France. This document is available on publications.banque-france.fr/en
NON-TECHNICAL SUMMARY

We analyze the redistribution channel of a money-financed (MFFS) versus debt-financed fiscal stimulus (DFFS) in a model where a fraction of agents is borrowing constrained. We find that a money-financed fiscal stimulus is able to redistribute from savers to borrowers around the double of what a debt-financed fiscal stimulus does. The redistribution channel of the stimuli can be decomposed in what Auclert (2019) calls the Fisher effect and the interest rate exposure effect. The unexpected increase in the price level due to the injection of liquidity of a money financed fiscal stimulus revalues nominal balance sheets with nominal creditors losing and nominal debtors gaining (Fisher effect). In addition, the real interest rate fall redistributes away from savers to borrowers (interest rate exposure effect). However, a money-financed fiscal stimulus generates larger fluctuations than a DFFS in the output gap, inflation gap and consumption gap. Consequently a MFFS generates larger welfare losses than a DFFS. The consumption equivalent welfare losses are particularly large in a borrower-saver framework due to the presence of the consumption gap that characterizes the welfare function, which is instead absent in a representative agent model. To sum up, the redistributive effects are welfare detrimental. But, the larger the redistributive effects, the higher the impact and cumulative fiscal multipliers are and more effective the stimulus is (see Figure). Finally, differently from Galì (2020), we show a liquidity trap scenario amplifies the differences between money-financed and debt-financed fiscal stimuli.

Fiscal Multipliers. Value of dynamic instantaneous (left figures) and cumulative (right figures) fiscal multipliers of consumption (top figures) and output (bottom figures), as a function of the share of borrowers.
Une relance budgétaire financée par création monétaire est-elle souhaitable ?

RéSUMÉ

Nous analysons le canal de redistribution d'une relance budgétaire financée par création monétaire par rapport à celle financée par la dette dans un cadre emprunteur-épargnant. Le canal de redistribution est plus large lorsque l'on considère une relance budgétaire financée par création monétaire. Cependant, il génère également des pertes de bien-être plus importantes qu'une relance budgétaire financée par la dette, en particulier dans un cadre emprunteur-épargnant en raison de la présence supplémentaire de l'écart de consommation par rapport à un modèle d'agent représentatif.

Mots-clés : Emprunteurs-épargnants ; stimuli fiscaux ; Bien-être; Multiplicateurs fiscaux.

Les Documents de travail reflètent les idées personnelles de leurs auteurs et n'expriment pas nécessairement la position de la Banque de France. Ils sont disponibles sur publications.banque-france.fr
1 INTRODUCTION

The current health and economic crisis calls for an urgent fiscal intervention in a scenario in which debt ratios are already large despite policy rates hit their zero lower bound for a relatively long time now. Giavazzi and Tabellini (2020) proposed the issue of irredeemable or very long maturity Eurobonds backed by the ECB to keep the financing burden low. Galì (2020b) proposed to provide struggling firms with unrepayable central bank funding, without raising their financial liabilities. As stated by the same author, if the central bank would agree voluntarily to participate only in the face of the current exceptional situation and to provide money to well defined measures restricted to the emergency period, the independency is preserved. In the same vein, Galì (2020a) and English et al. (2017) analyze a money-financed fiscal stimulus (MFFS, hereinafter). Galì (2020a) analyzes the effects of a money-financed fiscal stimulus and compares them with those resulting from a conventional debt-financed fiscal stimulus (DFFS, hereinafter), showing the stronger effectiveness of a MFFS. Also it shows that the difference in effectiveness of the two stimuli persists but it is much smaller under a ZLB. In the same framework, English et al. (2017) highlight how money-financed fiscal programs, if communicated successfully and credibly, could provide a significant stimulus in a Representative Agent New-Keynesian model (RANK, hereinafter).

The above mentioned papers are mainly concerned by the aggregate effects of a MFFS and are confined to a representative agent setting. They therefore ignore the potential redistribution channel of a MFFS. Also they do not analyze the welfare effect implied by the two stimuli. However, empirical evidence1 on monetary stimuli shows large redistributive effects if they are not compensated by effects of opposite sign triggered by a fiscal stimulus. It results in some agents being better off and others being worse off. However, what are the overall effects of a MFFS on welfare? Is there any trade-off between redistribution and welfare? To understand better these issues is the goal of our paper.

The main interest of the paper lies indeed in the redistribution channel of a money-financed versus debt-financed fiscal stimulus in a heterogeneous agent economy, and how this channel is key to influence welfare. As we show in the paper, taking the redistribution channel and its welfare implication into account may lead to revise policy conclusions on the implementability of unconventional monetary policy and on the combination of monetary and fiscal expansion. This may be relevant since a MFFS is considered illegal in many jurisdictions due to central bank independence and mandate that do not permit them to monetize

1Sterk and Tenreyro (2018) provide empirical evidence of the non-Ricardian effects of unconventional monetary policy and fiscal policy interaction, due to the redistribution channel. They document a substantial response of public debt to a monetary policy shock. Kaplan et al. (2018) argue that the aggregate effect of monetary policy shocks depends on the type of fiscal policy reaction. In addition, if low-income agents more than proportionately benefit from increases in aggregate income - as suggested by Coibion et al. (2017) - the earnings heterogeneity channel also amplifies the effects of a monetary and fiscal interaction, as a MFFS. See also Auclert (2019), Doepke and Schneider (2006) and Adam and Zhu (2016) among others.
We model the redistribution channel via Borrower-Saver framework à la Bilbiie et al. (2013). The two agents differ in their degree of impatience, they are both intertemporal maximizers so that borrowing and lending take place in equilibrium, and financial markets are imperfect. Borrowers face a suitable defined borrowing limit, and it is important to highlight that, differently from the standard rule of thumb framework, the distribution of debt/saving across agents is endogenous. Thus, the paper analyzes the redistribution effects of a money-financed versus debt-financed government expenditure increase - which has more uniform effects on the two agents than tax cuts would have - and investigates how these effects can influence welfare. To isolate the redistribution channel, we also keep as benchmark the analysis of such stimuli in a standard RANK model (Gali, 2020a).

We compare the redistribution channel of a MFFS versus the one of a DFFS - both in normal times and at the zero lower bound. We compute instantaneous and cumulative fiscal multipliers as the share of borrowers increases and for three alternative types of steady state borrowing constraints: 1) our baseline framework, which considers net borrowers; no borrowing possibility (i.e. rule of thumb agents); no borrowing limit. Finally, for the welfare analysis we derive the second order approximation of the welfare-loss function using the Linear Quadratic method of Woodford (2002) and Benigno and Woodford (2003). In line with Ferrero et al. (2018), we show that, in a Borrowers-Savers framework, the loss function not only depends on output gap and inflation but also on the consumption gap between borrowers’ and savers’ consumption. This implies that any redistributive policy may either reduce or increase welfare depending on its effect on the consumption gap. Ceteris paribus, as long as the policy is able to reduce the consumption gap, welfare increases. If instead the policy increases the gap, welfare reduces. We show that a MFFS strongly increases the consumption gap between the two agents by redistributing income from savers to borrowers, thus resulting detrimental for welfare.

More in details, we find that a MFFS is able to redistribute from savers to borrowers around the double of what a DFFS does. The redistribution channel of the stimuli can be decomposed in what Auclert (2019) calls the Fisher effect and the interest rate exposure effect. The unexpected increase in the price level due to the injection of liquidity of a MFFS revalues nominal balance sheets with nominal creditors losing and nominal debtors gaining (Fisher effect). In addition, the real interest rate fall redistributes away from savers to borrowers (interest rate exposure effect). Hence, a MFFS has a double redistributive effect compared to a DFFS. However, for the same reasons, a MFFS generates larger fluctuations than a DFFS in the output gap, inflation gap and consumption gap. Consequently, a MFFS generates larger welfare losses than a DFFS, particularly in a borrower-saver framework due to the additional presence of the consumption gap with respect to a RANK model. To sum up, the redistributive effects are welfare detrimental. But, the larger the redistributive effects, the higher the impact and cumulative fiscal multipliers.

Finally, differently from Gali (2020a), we show a liquidity trap scenario am-
plifies the differences between MFFS and DFFS because, differently from normal times, the Fisher channel moves in opposite direction according to the type of financing regime we analyze. In a liquidity trap scenario, the lower expected inflation induced not only by the adverse demand shock, but also by the downward pressure exerted by borrowers, is not compensated by the upward inflationary pressure of a DFFS. On the contrary, a MFFS in a TANK model\(^2\) is effective at dampening the negative effects of the adverse demand shock on output and inflation, after the second quarter.

The outline of the paper is as follows. Section 1 sets out the baseline model. In Section 2, we formally present the alternative combinations of monetary and fiscal policies that are object of our analysis. Section 3 presents the comparison between the redistributive dynamics of a MFFS and the ones of a DFFS in normal times and in liquidity trap, while Section 4 provides an analytical and numerical welfare analysis of these stimuli.

2 THE MODEL ECONOMY

We build a DSGE model that follows closely Bilbiie et al. (2013)\(^3\): it features heterogeneous agents, who differ in their degree of impatience, and imperfect financial markets. Both agents are intertemporal maximizers - so that borrowing and lending take place in equilibrium - but a fraction of agents face a suitably defined borrowing limit. In addition, the distribution of debt/saving across agents is endogenous. This setup is labelled Borrower-Saver model\(^4\). Below we introduce the key details of the model. All the equations characterizing the equilibrium of the economy are reported in Table (1).

2.1 Households

All households have preferences defined over private consumption, \(c_{i,t}\), real balances, \(m_{i,t} = M_{i,t}/P_{t}\), and labor services, \(n_{i,t}\), according to the following separable period utility function,

\[
\ln (c_{i,t}) - \frac{n_{i,t}^{1+\varphi}}{1+\varphi} - \frac{\chi}{1+\sigma} \left(\bar{x} - \frac{M_{i,t}}{c_{i,t}^{\sigma}} \right)^{1+\sigma}, \quad \text{with } \varphi > 0, \chi > 0 \text{ and } \sigma > 0.
\]

\(^2\)Under a money-financing regime, the presence of borrowers exerts an upward pressure on inflation that is absent in a RANK model (see Gali, 2020a).

\(^3\)This model is a variant of the RBC-type borrower-saver framework proposed by Kiyotaki and Moore (1997), and extended to a New Keynesian environment by Iacoviello (2005) and Monacelli (2009). See also, Eggertsson and Krugman (2012) and Monacelli and Perotti (2011).

\(^4\)See also Mankiw (2000) for a slightly different model in which only one agent optimizes intertemporally, and coexists with a myopic agent, who merely consumes her income - it is labelled savers-spenders model for fiscal policy. The classic savers-spenders model has been extended by, among others, Galli et al. (2007) and Bilbiie (2008) to include nominal rigidities and other frictions to study questions ranging from the effects of government spending to monetary policy analysis and equilibrium determinacy.
The agents differ only in their discount factors $\beta_t \in (0, 1)$. Specifically, we assume that there are two types of agents $t = s, b$ and $\beta_s > \beta_b$. Following English et al. (2017), the final term of the equation implies that real balances - expressed as a ratio to t’s consumption - are valued at the margin until reaching a stochastic bliss point of \bar{x}. The scaling factor is aggregate consumption of each type of agents, c^0_t, which is taken as given by household; this formulation implies that the consumption Euler equation doesn’t depend on the level of real balances, consistent with most empirical analysis.

$1 - \lambda$ is the share of patient households: we label them savers, discounting the future at β_s. Consistent with the equilibrium outcome (discussed below) that patient agents are savers (and hence will hold the bonds issued by impatient agents), we impose that patient agents also hold all the shares in firms and money holdings. Each saver chooses consumption, hours worked, money holdings5 and asset holdings (bonds and shares), solving the intertemporal problem subject to the sequence of constraints.

$$c_{s,t} + b^h_{s,t} + a_{s,t} + \Omega_{s,t}v_t + m_{s,t} \leq \frac{1 + \mu_{t-1}}{\pi_t}b_{s,t-1} + \frac{1 + \mu_{t-1}}{\pi_t}a_{s,t-1} + \Omega_{s,t-1}(v_t + \Pi_t) + \frac{m_{s,t-1}}{\pi_t} + w_t n_{s,t} - \tau_{s,t}$$

where w_t is the real wage, $a_{s,t}$ is the real value of total private assets (π_t is the gross inflation rate), a portfolio of one-period bonds issued in $t-1$ on which the household receives nominal interest rate, i_t, v_t is the real market value at time t of shares in intermediate good firms, Π_t are real dividend payoffs of these shares, $\Omega_{s,t}$ are share holdings, $\tau_{s,t}$ are per capita lump-sum taxes paid by the saver, and $b^h_{s,t-1}$ are the savers’ holdings of real public bonds which deliver the same nominal interest rate as private bonds.

The rest of the households on the $[0, \lambda]$ interval are impatient (and will borrow in equilibrium, hence we index them by b for borrowers). They face the intertemporal constraint:

$$c_{b,t} + a_{b,t} + m_{b,t} = \frac{1 + \mu_{t-1}}{\pi_t}a_{b,t-1} + \frac{m_{b,t-1}}{\pi_t} + w_t n_{b,t} - \tau_{b,t}$$

as well as the additional borrowing constraint6 (on borrowing in real terms) at all times t:

5Given the opportunity cost of holding money balances when the (net) interest rate is positive, real money demand (expressed relative to consumption) is less than its satiation level \bar{x}. As in Eggertsson and Woodford (2003), the money demand function is continuous at $i_t = 0$ with $\frac{M_{s,t}}{\pi c_{s,t}} \geq \bar{x}$ if $i_t = 0$. Under log utility over consumption, real money balances vary directly with consumption with a unit coefficient.

6The Lagrangian multiplier associated to the borrowing constraint, ψ_t, takes a positive value whenever the constraint is binding. Indeed, because of our assumption on the relative size of the discount factors, the borrowing constraint will bind in steady state.
We assume that borrowers do not hold money, \(m_{b,t} = 0 \) because they are net borrowers at all times \(t \).

2.2 Firms

There are infinitely many firms indexed by \(z \) on the unit interval \([0,1]\), and each of them produces a differentiated variety of goods. Following Rotemberg (1982), we assume that firms face quadratic price-adjustment costs,

\[
\frac{\theta}{2} \left(\frac{p_t(z)}{p_{t-1}(z)} - 1 \right)^2,
\]

expressed in the units of consumption goods and \(\theta \leq 0 \). Assuming that firms discount at the same rate as savers implies that

\[
Q_{t,t+i} = \beta^s \frac{c_{t,t+i}}{c_{t,t+i+1}}.
\]

Each firm faces the following demand function:

\[
y_t(z) = \left(\frac{p_t(z)}{p_t} \right)^{-\tau} y^d_t,
\]

where \(y^d_t \) is aggregate demand and it is taken as given by firm \(z \).

2.3 The fiscal and monetary policy framework

The government - henceforth understood as combining the fiscal and monetary authority, acting in a coordinated way - is assumed to finance its expenditures through three sources: (i) lump-sum taxes, (ii) the issuance of riskless one-period bonds with a nominal yield \(i_t \), which are held only by savers and (iii) the issuance of (non-interest bearing) money. Let

\[
\delta_t = \frac{B_t - B}{Y_t},
\]

\[
\hat{g}_t = \frac{G_t - G}{Y_t},
\]

and

\[
\hat{t}_t = \frac{T_t - T}{Y_t},
\]

denote, respectively, deviations of government debt, government purchases, and taxes from their steady state values, expressed as a fraction of steady state output. In what follows we interpret \(B \) as an exogenously given long run debt target (denoted by \(\delta = B/Y \) when expressed as a share of steady state output). Thus, we introduce a fiscal rule, according to which tax variation is endogenous and varies in response to deviations of the debt ratio from its long run target.

2.4 Equilibrium

In an equilibrium of this economy, all agents take prices as given (with the exception of monopolists who reset their price in a given period), as well as the evolution of exogenous processes. A rational expectations equilibrium is then (as usual) a sequence of processes for all prices and quantities introduced above such that the optimality conditions hold for all agents and all markets clear at any given time \(t \). Private debt is in zero net supply \(\int_0^1 a_{t,t} dt = 0 \), and hence, since agents of a certain type make symmetric decisions:

\[
\lambda a_{b,t} + (1 - \lambda) a_{s,t} = 0.
\]

Equity market clearing implies that share holdings of each saver are:

\[
\Omega_{s,t} = \Omega_{s,t+1} = \Omega = \frac{1}{1 - \lambda}.
\]

Finally, by Walras’ Law the goods market also clear. All

\[
-a_{b,t} \leq d.
\]
Table 1: Summary of the Model

<table>
<thead>
<tr>
<th>Description</th>
<th>Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Budget Constraint, S</td>
<td>$c_{s,t} + b_{s,t} + a_{s,t} + \Omega_{s,t} v_t + m_{s,t}$</td>
</tr>
<tr>
<td></td>
<td>$\leq \frac{1+i_{t-1}}{\pi_{t}} b_{s,t-1} + \frac{1+i_{t-1}}{\pi_{s,t-1}} a_{s,t-1}$</td>
</tr>
<tr>
<td></td>
<td>$+ \Omega_{s,t-1} (v_t + \Pi_t) + \frac{1}{\pi_{s,t-1}}$</td>
</tr>
<tr>
<td></td>
<td>$+ w_t n_{s,t} - r_{s,t}$</td>
</tr>
<tr>
<td>Euler equation for bond, S</td>
<td>$c_{s,t}^{-1} = \beta_s E_t \left[\frac{1+i_{t+1}}{\pi_{s,t+1}} c_{s,t+1} \right]$</td>
</tr>
<tr>
<td>Euler equation for share holdings, S</td>
<td>$v_t = \beta_s E_t \left[\frac{c_{s,t}}{c_{s,t+1}} (v_{t+1} + \Pi_{t+1}) \right]$</td>
</tr>
<tr>
<td>Labor supply, S</td>
<td>$n_{s,t} c_{s,t} = w_t$</td>
</tr>
<tr>
<td>Money demand, S</td>
<td>$\chi \left(\bar{x} - \frac{m_{s,t}}{c_{s,t}} \right) \sigma = \frac{i_t}{1+i_{t}}$</td>
</tr>
<tr>
<td>Labor supply, B</td>
<td>$n_{b,t} c_{b,t} = w_t$</td>
</tr>
<tr>
<td>Money demand, B</td>
<td>$m_{b,t} = 0$</td>
</tr>
<tr>
<td>Euler equation, B</td>
<td>$c_{b,t}^{-1} = \beta_b E_t \left[\frac{1+i_{t}}{\sigma_{s,b,t+1}} c_{b,t+1} \right] + \psi_t$</td>
</tr>
<tr>
<td>Production function</td>
<td>$y_t = n_t$</td>
</tr>
<tr>
<td>Firm’s profits</td>
<td>$\Pi_t = y_t - w_t n_t - \frac{\sigma}{2} \left(\frac{\pi_{t}}{\pi_{t-1}} - 1 \right)^2$</td>
</tr>
<tr>
<td>Labor demand</td>
<td>$m_{c,t} = w_t$</td>
</tr>
<tr>
<td>Phillips curve</td>
<td>$\pi_t (\pi_{t-1}) = \beta_s E_t \left[\frac{c_{s,t}}{c_{s,t+1}} \pi_{t+1} (\pi_{t+1} - 1) \right]$</td>
</tr>
<tr>
<td>Government’s consolidated real budget constraint</td>
<td>$g_t + \frac{1+i_{t}}{\pi_{t}} b_{t-1} = b_t + \tau_t + \left(m_t - \frac{m_{t-1}}{\pi_{t}} \right)$</td>
</tr>
<tr>
<td>Fiscal rule</td>
<td>$\tilde{\tau}t = \phi_B \tilde{b}{t-1}$</td>
</tr>
<tr>
<td>Labor market clearing condition</td>
<td>$n_t = \lambda n_{b,t} + (1 - \lambda) n_{s,t}$</td>
</tr>
<tr>
<td>Resource constraint</td>
<td>$c_t = c_t + g_t + \frac{\sigma}{2} (\pi_t - 1)^2$</td>
</tr>
<tr>
<td>Aggregate consumption</td>
<td>$c_t \equiv \lambda c_{b,t} + (1 - \lambda) c_{s,t}$</td>
</tr>
<tr>
<td>Aggregate tax</td>
<td>$\tau_t \equiv \lambda \tau_{b,t} + (1 - \lambda) \tau_{s,t}$</td>
</tr>
<tr>
<td>Market clearing for money</td>
<td>$(1 - \lambda) m_{s,t} = m_t$</td>
</tr>
<tr>
<td>Market clearing for public debt</td>
<td>$(1 - \lambda) b_{s,t} = b_t$</td>
</tr>
</tbody>
</table>

bonds issued by the government will be held by savers. And, considering that $m_{b,t} = 0$, all money issued by the government will be also held by savers.

3 MONEY VERSUS DEBT-FINANCED FISCAL STIMULUS

3.1 Money-financed fiscal stimulus (MFFS)

In the present paper we analyze the redistribution channel of a MFFS, and its impact on the aggregate effectiveness of the stimulus itself. The intervention takes the form of an exogenous increase in government purchases. We assume
that such fiscal stimulus follows the exogenous AR(1) process:

\[\dot{g}_t = \rho g_{t-1} + \varepsilon^g_t. \]

(1)

The stimulus we investigate requires neither an increase in the stock of government debt nor higher taxes, current or future. Thus, following Galì (2020a), we define our MFFS as a regime in which seigniorage is adjusted every period in order to keep real debt \(b_t \) unchanged. In terms of the notation above, this requires

\[\dot{b}_t = 0 \]

(2)

Note that, combined with the fiscal rule, taxes need not be adjusted as a result of an increase in government purchases relative to their initial level, neither in the short run nor in the long run.

3.2 Debt-financed fiscal stimulus (DFFS)

As an alternative to the fiscal monetary regime described above, and with the purpose of having a benchmark, we also analyze the effects of a debt-financed fiscal stimulus in a (more conventional) environment in which the central bank follows a simple interest rate rule given by

\[\log \left(\frac{1_i t}{1 + i_t} \right) = \phi_i \log \left(\frac{\pi_t}{\pi} \right) \text{ for all } t \]

(3)

where \(\phi_i = 1.5^9 \) determines the strength of the central bank’s response of inflation deviations from the zero long-term target. An interest rate like (3) gives the central bank a tight control over inflation in response to a fiscal stimulus, through its choice of coefficient \(\phi_i \).

4 MODEL DYNAMICS

This section is divided in three parts. First, it reports the parameterization. Second, it compares the model dynamics implied by a money-financed fiscal stimulus to the model dynamics implied by a debt-financed fiscal stimulus, and their respective fiscal multipliers, in normal times. Third, we compare the two alternative financing regimes of a government expenditure increase in liquidity trap.

4.1 Parameterization

We solve the model by taking a first order approximation around the steady state. The model parameterization is summarized in Table (2). We assume

9 The coefficient \(\phi_i \) in the interest rate rule could play a key role in these comparison. This is the reason why in Appendix A, we analyze the results under alternative values of the parameter \(\phi_i \).
the following settings for the household related parameters in line with those of Bilbiie et al. (2013): discount factors of borrowers and savers are set respectively \(\beta_b = 0.95 \) and \(\beta_s = 0.99 \). Analogously, as in BMP, we set the borrowing constraint \(d = 0.5 \). Parameter \(\lambda \), denoting the share of impatient agents, is set to 0.25.

The remaining parameters are kept at their baseline values. We assume the elasticity of substitution among goods \(\varepsilon = 6 \) and the curvature of labor disutility \(\varphi = 1 \). The model’s main frictions are given by price stickiness and market power in goods market. We assume a baseline setting of \(\alpha = 0.75 \), an average price duration of four quarters, a value consistent with much of the empirical micro and macro evidence\(^{10}\). Further, we assume the following setting for the parameters related to money demand in utility function. The weight of real balances in utility function is set \(\chi = 0.018 \), in line with Annicchiarico et al. (2012). The specification of money demand implies a unitary long-run elasticity with respect to consumption. We impose a short-run interest rate semi-elasticity of money demand equal to 2.5 (when expressed at an annual rate), in line with English et al. (2017).

The fiscal parameters are in line with Galí (2019). We set the tax adjustment parameter, \(\psi_b \), equal to 0.02. That calibration can be seen as a rough approximation to the fiscal adjustment speed required for euro area countries, as established by the so-called fiscal compact adopted in 2012. With regard to the target/steady state debt ratio, \(b \), we assume a baseline setting of 2.4, which is consistent with the 60 percent reference value specified in EU agreements. Finally, with regard to the persistence parameter \(\rho_g \), we choose 0.5 as a baseline setting, while the steady state share of government purchases in output equals 0.2.

4.2 Normal times

Figure 1 displays the response over time of output, inflation, debt and other macroeconomic variables of interest to an exogenous increase in government purchases, under the baseline calibration introduced above and ignoring the ZLB constraint. The red lines with circles display the responses under the money financing (MFFS) scheme, while the blue lines with diamonds show the response under the debt financing (DFFS). For debt and taxes, we display the percent response of, respectively, real debt and real taxes.

\(^{10}\)That parameter, \(\alpha \), is the Calvo price parameter. In our model, we adopt Rotemberg price stickiness. That’s the reason why we derive \(\theta \), Rotemberg’s parameter, in function of the well-estimated \(\alpha : \theta = \frac{\alpha(\varepsilon-1)Y}{(1-\alpha)(1-\alpha\gamma)} \).
<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borrower’s discount factor β_b</td>
<td>0.95</td>
</tr>
<tr>
<td>Saver’s discount factor β_s</td>
<td>0.99</td>
</tr>
<tr>
<td>SS private debt d</td>
<td>0.5</td>
</tr>
<tr>
<td>Share of impatient agents λ</td>
<td>0.25</td>
</tr>
<tr>
<td>Weight of money in utility function χ</td>
<td>0.018</td>
</tr>
<tr>
<td>Money satiation level \bar{x}</td>
<td>1</td>
</tr>
<tr>
<td>short run interest rate semi-elasticity of money demand σ</td>
<td>2.5</td>
</tr>
<tr>
<td>SS share government purchases in output γ</td>
<td>1/5</td>
</tr>
<tr>
<td>Fiscal stimulus persistence ρ_d</td>
<td>0.5</td>
</tr>
<tr>
<td>Steady state debt ratio (quarterly) \bar{b}_H</td>
<td>2.4</td>
</tr>
<tr>
<td>Elasticity of substitution (goods) ϵ</td>
<td>6</td>
</tr>
<tr>
<td>Index of price rigidities σ</td>
<td>0.75</td>
</tr>
<tr>
<td>Debt feedback coefficient Φ_B</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Table 2: Baseline parameters

Fig. 1. Dynamic Effects of an Increase in Government Purchases: Debt vs. Money Financing.

Figure 2 displays the response over time of the disaggregated consumption and disaggregated labor supply as well as the consumption ratio (C_b/C_s) and labor ratio (N_b/N_s) to an exogenous increase in government purchases.

Consider first the case of a debt-financed increase in government purchases, with monetary policy pursuing an inflation targeting strategy. If the monetary authority is assumed to pursue an independent price stability mandate, or in other words the money supply adjusts endogenously in order to bring about the interest rate required to stabilize prices, as the blue line with diamonds shows, the real interest rate will increase on impact because the inflation targeting interest rate rule implies that the nominal interest rate increases more than one
to one with inflation. And, it explains also the money demand collapse.

Figure 2 underlines the redistributive effects of the alternative fiscal and monetary policy combinations. We can observe how the redistributive effects influence the effectiveness of these combinations, particularly of our benchmark MFFS. In relative terms, if we measure the redistribution channel as the ratio of borrower’s consumption over saver’s consumption, we can observe that a MFFS has a larger effect than a DFFS. In any case, both the stimuli bring about a redistribution from savers to borrowers. However, a MFFS is able to redistribute around 200% of what a DFFS is able to do. This result can be explained by the redistribution channel (Audert, 2019) - particularly by two of its components, the Fisher effect and the interest rate exposure effect. The unexpected increase in the price level due to the injection of liquidity of a MFFS revalues nominal balance sheets with nominal creditors losing and nominal debtors gaining (Fisher effect). In addition, the real interest rate fall redistributes away from savers to borrowers (interest rate exposure effect), i.e. the c-ratio \(\frac{C_b}{C_s} \) increases.

Consequently, the expansionary effects of a MFFS are larger than those of a DFFS. Debt increases widely in the latter case, returning to its initial value slowly, as guaranteed by fiscal policy rule (through higher taxes). Under the money financing scheme, the larger expansion in output and consumption leads to an increase of inflation, which reinforces the expansion in aggregate demand by lowering the real rate.

As shown in Figure 3, if we compare the response of output and consumption in a TANK model with the same responses in a RANK model - both a MFFS and a DFFS are more effective in a TANK model, particularly a MFFS.
Fig. 3. Dynamic Effects of an Increase in Government Purchases: Representative Agent (dotted lines) vs. Two-Agent (solid lines).

4.2.1 Multipliers

Next we discuss the sensitivity of some of the qualitative findings on the effectiveness of fiscal policy, particularly focusing on the share of borrowers. We firstly compute the fiscal multipliers of output and consumption associated to an increase in government purchases under the money-financing and the debt-financing regimes presented above. Then, in order to understand the role played by the financial constraint, we evaluate the same multipliers under different values of the steady state borrowing limit, \bar{d}.

To differentiate between the immediate impact of a change in fiscal spending and its long-run implications for the economy, we compute both the instantaneous and the cumulative fiscal multiplier, following Uhlig (2010).

The Instantaneous Fiscal Multiplier (IFM, hereinafter) measures, in each period, the percentage deviation of a generic variable X_t from its steady state in response to a change in government purchases that, on impact, amounts to one percent of the SS value of output. That is:

$$IFM(\hat{x}) = \frac{\hat{x}_t}{\hat{g}_T}, \forall t \geq T$$

where $\hat{x}_t = \frac{x_t - \bar{x}}{\bar{x}}$, $\hat{g}_T = \frac{G_T - \bar{G}}{\bar{G}}$ with t being the time index for the periods following the initial fiscal shock in period T. \bar{G} and \bar{Y} are, respectively, the steady state values of government spending and output. In particular, we will consider the instantaneous multipliers associated to $t = T$, and we refer to them as Instantaneous Multipliers of \hat{x}.

As stressed in Uhlig (2010), policymakers cannot solely rely on the instantaneous multiplier since it can be misleading as it ignores the cumulated impact
of the initial fiscal policy measure on the economy over time. Thus, in order to capture the cumulative impact on the variable of interest of the fiscal shock, we consider also the cumulative fiscal multiplier according to Uhlig (2010).

The Cumulative Fiscal Multiplier (CFM, hereinafter) identifies, in each period, the discounted cumulative change of a variable x_t measured in terms of percentage deviation from its steady state with respect to the discounted cumulative deviation of government spending from its steady state value. That is,

$$CFM(x_t) \equiv \sum_{s=t}^{T} \frac{R^{-(s-t)}}{R} \left(x_s - x_{ss} \right), \forall t \geq T$$

where R being the steady state of the nominal interest rate used as discount rate.

Figure 4 shows the IFM and CFM for consumption and output under money-financing and debt-financing schemes, as λ changes from 0.1 to 0.45. As expected, consumption and output multipliers (both the impact and the cumulative ones) are higher under a MFFS than under a DFFS. The intuition is the following one. A MFFS, having a crowding-in effect on consumption of both agents, is associated to multipliers that are always higher than multipliers related to a DFFS.

![Fig. 4. Fiscal Multipliers. Value of dynamic instantaneous (left figures) and cumulative (right figures) fiscal multipliers of consumption (top figures) and output (bottom figures), as a function of the share of borrowers.](image)

The impact and cumulative fiscal multipliers of output related to a MFFS are always greater than one, while those ones related to a DFFS need at least 20% of borrowers to be larger than one. Further, all multipliers considered increase exponentially as the share of borrowers, λ, increases, particularly the impact multipliers. The multipliers of consumption, on the other hand, are larger than
Table 3: Share of borrowers associated to unitary fiscal multipliers of consumption

<table>
<thead>
<tr>
<th></th>
<th>MFFS</th>
<th>DFFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFMC</td>
<td>24%</td>
<td>43%</td>
</tr>
<tr>
<td>CFMC</td>
<td>29%</td>
<td>46%</td>
</tr>
</tbody>
</table>

one for values which depend on the type of multiplier that we analyze (instantaneous or cumulative) and on the regime analyzed. Table (3) summarizes the results.

Finally, Figure 5 shows the CFM for three different values of the steady state private debt: i) rule of thumb agents case (no borrowing, \(\bar{d} = 0 \)); ii) net borrowers (\(\bar{d} = 0.5 \)); iii) no borrowing limit (\(\bar{d} = 1 \)), under the money-financing and the debt-financing scheme.

Notice that, in all cases, fiscal multipliers increase as \(\bar{d} \) increases. By relaxing the borrowing constraint in steady state, the borrower’s consumption can increase more, and it generates higher fiscal multipliers.

![Fig. 5. Fiscal Multipliers. Value of dynamic cumulative fiscal multipliers of consumption (left figures) and output (right figures) under a money-financing regime (top figures) and a debt-financing regime (bottom figures), as a function of the share of borrowers.](image)

To sum up, a MFFS implies always higher impact and cumulative fiscal multipliers than a DFFS. Under both financing schemes, fiscal multipliers are an increasing function of the share of borrowers and of the steady state borrowing limit.
4.3 In a liquidity trap

Next we explore the effectiveness of a money-financed fiscal stimulus in stabilizing the economy in face of a temporary adverse shock. The latter is assumed to be large enough to prevent the central bank from fully stabilizing output, due to a zero lower bound (ZLB) constraint on nominal interest rate. That MFFS is compared to a DFFS.

Note that under the notation introduced above the ZLB constraint takes the form $1 + i_t \geq 1$ for all t. The baseline experiment assumes that, $\varepsilon^d_t = \xi < 1$ for $t = 0, 1, 2, \ldots T$ and $\varepsilon^d_t = 0$ for $t = T + 1, T + 2, \ldots$. In words, this describes a temporary adverse demand shock that brings the natural rate into negative territory up to period T. After period T, the shock vanishes and the natural rate returns to its initial (positive) value. The shock is assumed to be fully unanticipated but, once it is realized, the trajectory of ε^d_t and the corresponding policy responses are known with certainty.

In the case of a MFFS, the ZLB constraint can be incorporated formally in the set of equilibrium conditions listed in Table (1) by replacing the saver’s money demand with the complementarity slackness condition:

$$1 + i_t = \chi \left(\frac{x - m_{s,t}}{c_{s,t}} \right)^\sigma - \frac{i_t}{1 + i_t}$$

for all t, where

$$1 + i_t \geq 1$$

is the ZLB constraint and

$$\chi \left(\frac{x - m_{s,t}}{c_{s,t}} \right)^\sigma - \frac{i_t}{1 + i_t} \geq 0$$

represents the demand for real balances. As long as the nominal rate is positive, (4) holds with equality (but it with inequality once the nominal rate reaches the ZLB and real balances overshoot their satiation level).

By contrast, in the case of a DFFS, condition (3) must be replaced with

$$(1 + i_t - 1) \left[\log \left(\frac{1 + i_t}{1 + \hat{i}} \right) - \phi_\pi \log E_t \left(\frac{\pi_{t+1}}{\pi_t} \right) \right] = 0 \quad \text{for all } t$$

together with

$$\left[\log \left(\frac{1 + i_t}{1 + \hat{i}} \right) - \phi_\pi \log E_t \left(\frac{\pi_{t+1}}{\pi_t} \right) \right] = 0 \quad \text{for } t = T + 1, T + 2, \ldots$$

Thus, the zero inflation target is assumed to be met once the shock vanishes; until that happens the nominal rate is assumed to be kept at the ZLB, i.e. $1 + i_t = 1 \text{ for } t = 0, 1, 2, \ldots T$.

Money-financed and debt-financed scenarios are analyzed next as a response to the demand shock described above. We assume $\varepsilon^d_t = -0.065$ and $T = 6$.

14
Thus, the experiment considered corresponds to an unanticipated drop of the natural interest rate to \(-1\%\) for five quarters, and a subsequent reversion back to the initial value of \(+1\%\).

We start by considering the debt-financed government expenditure increase \((\hat{\gamma}_t = 0.01, \text{ for } t = 0, 1, ..., 5)\). The blue lines with diamonds in Figures 6 and 7 show the economy’s responses to the adverse demand shock when the fiscal authority increases government expenditure by 1 per cent of steady state output financing the resulting deficit through debt issuance and it lasts for the duration of the shock. The ZLB prevents the central bank from lowering the nominal rate to match the decline in the natural rate. As a result, we see that a debt-financed increase in government purchases is effective at dampening the negative effects of the adverse demand shock on output only in the first quarter. Note also that real debt, and consequently taxes, increase considerably due to the rise in real interest rates, which increases the government’s financial burden. Once the natural rate returns to its usual value, inflation and the output gap are immediately stabilized at their zero target. The main reason for the low effectiveness of debt-financed government purchases in a liquidity trap (relative to normal times) lies in the higher real interest rates relative to an identical policy in "normal" times, combined with the lower expected inflation induced, not only by the adverse demand shock, but also by the downward pressure exerted by borrowers.

However, when the increase in government purchases (of the same size) is money-financed (see red lines with circles), the impact on output and inflation is substantial. A money-financed increase is now effective at dampening the negative effects of the adverse demand shock on output, after the second quarter\(^{11}\), and inflation on impact - a finding which complies with the results in normal times (see Fig.1). In other words, ceteris paribus a TANK model requires the adverse demand to be substantially larger to reproduce the results of a RANK model. The key difference is again in the response of the aggregate consumption. The greater effectiveness of money-financing in the liquidity trap scenario can be traced to the associated lower real rate, due to the accumulated liquidity resulting from the money-financing rule. These dynamics activate the redistribution channel described above.

\(^{11}\)In the first quarter, the absence of the Ricardian equivalence in a money-financing regime and the decline of real wages, leads savers to decrease their labor supply on impact.
Figure 6. Dynamic Effects of an Increase in Government Purchases in a Liquidity Trap: Debt vs. Money Financing.

Figure 7 underlines the redistributive effects of the alternative fiscal and monetary policy combinations. We can observe how the redistributive effects influence the effectiveness of these combinations. We can observe that, after the second quarter, a MFFS redistributes from savers to borrowers, even when the natural rate returns to its usual value. By contrast, a DFFS redistributes at all times from borrowers to savers and the consumption gap is closed when the natural rate returns to its usual value. Again, the redistribution channel can explain these results. Indeed, the Fisher effect and the interest rate exposure effect move in opposite direction according to the type of regime analyzed. When we consider a DFFS, the unexpected decrease in the price level devaluates nominal balance sheets with nominal creditors gaining and nominal debtors losing, and this change is supported by the interest rate exposure channel. Instead, the increase of the real rate when the fiscal stimulus is debt-financed amplifies the redistribution from borrowers to savers in a DFFS.
Fig. 7. Dynamic effects of an Increase in Government Purchases in a Liquidity Trap: Debt vs. Money Financing.

However, as shown in Figure 8, under a money-financing regime, the presence of borrowers exerts an upward pressure on inflation that is absent in a RANK model. Hence, the redistribution under a money-financing regime is explained by the Fisher channel. By contrast, under a debt-financing regime, the magnitude of the redistribution channel is solely explained by borrower’s labor supply. The absence of borrowers in a RANK model makes the economy to enter in a recession from the first quarter.

Fig. 8. Dynamic Effects of an Increase in Government Purchases in a Liquidity Trap: Representative Agent vs. Two-Agent Model.

We can therefore summarize the result as follows. A liquidity trap scenario amplifies the differences between MFFS and DFFS. A MFFS in a TANK model is effective at dampening the negative effect of the adverse demand shock. This is not valid in a RANK model (see Gali, 2020).

5 WELFARE

This section provides a welfare evaluation of the two alternative financing regimes of a government expenditure increase, the money-financing regime and the debt-financing. A formal evaluation of the performance of a MFFS with respect to a DFFS requires the use of some quantitative criterion. Following the seminal work of Woodford (2002) and Benigno and Woodford (2003), we adopt a welfare-based criterion, relying on a second-order approximation of the utility losses due to the deviations from the efficient allocation. In particular, in line with Ferrero et al. (2018), we derive the welfare-based loss function of the average per-period utility functions of borrowers and savers in an utilitarian perspective, by weighting the utility of each type of agent according to their
share in the population. Further, we assume that the policy maker discounts the future by using savers’ discount factor. The second order approximation yields the following welfare-loss function:\footnote{Technical details on the derivation of the objective function are left to the Appendix.}

\[
\hat{W}_t \simeq \frac{1}{2} \beta_{s} E_0 \beta_s \sum_{t=0}^{\infty} \left[\gamma_x \bar{x}_t^2 + \gamma_C \bar{c}_t^2 + \gamma_\pi \pi_t^2 \right] + t.i.p.
\] (5)

where welfare losses are expressed in terms of the equivalent permanent consumption, measured as a fraction of steady state consumption. Notice that, as in Ferrero et al. (2018), the loss function not only depends on output gap and inflation but also on the consumption gap between borrowers’ consumption and savers’ one. The term $\bar{c}_t = \bar{c}_t^b - \bar{c}_t^s$ is indeed the gap between borrowers’ consumption and savers’ one; $\bar{x}_t = y_t - y_t^{Eff}$ measures the output gap between the actual output and the efficient equilibrium output\footnote{This is true when $y_t^{Eff} = \frac{1+\phi}{1+\sigma+\phi} \Delta_t$ is the efficient output under the assumption that $y_t = A_t n_t$ and A_t is an exogenous productivity shock.} and π_t measures the inflation gap between the actual inflation and the long run rate, set equal to 1 in gross terms. Since all terms are squared terms, the larger the gaps the higher will be the implied welfare losses. The coefficients $\gamma_x = (\sigma + \phi)$, $\gamma_C = \frac{(1-\lambda)(1+\sigma+\phi)}{1+\sigma+\phi}$ and $\gamma_\pi = \phi_p$ represent the weights attached respectively to output gap, consumption gap and inflation gap.

The average welfare loss per period is thus given by the following linear combination of the variances of output gap, inflation and consumption gap:

\[
\mathcal{L} = \frac{\varphi + \sigma}{2} \left[\gamma_x \text{var}(\bar{x}_t) + \gamma_C \text{var}(\bar{c}_t) + \gamma_\pi \text{var}(\pi_t) \right].
\] (6)

Given our particular policy regimes (MFFS versus DFFS) and the calibration of the model’s parameters, one can determine the implied variance of inflation, output gap, consumption gap and the corresponding welfare losses associated with each policy regime.

Table 4 displays some statistics for the three alternative regimes: i) a MFFS; 2) a DFFS with a Central Bank implementing a standard Taylor rule with $\phi_x = 1.5$; ii) a DFFS with a Central Bank implementing a strict inflation targeting rule, $\pi_t = 0$. The remaining parameters are calibrated at their baseline values as in the rest of the paper. For each policy regime, Table 4 shows the implied standard deviations of output gap, inflation and consumption gap, expressed in percent terms, as well as the welfare losses resulting from the associated deviations from the efficient allocation, expressed as a fraction of steady state consumption. The same statistics are shown for the baseline model and for the RANK model. In the latter case, the average welfare loss function becomes:

\[
\mathcal{L}_{\text{RANK}} = \frac{1}{2} \left[\gamma_x \text{var}(\bar{x}_t) + \gamma_\pi \text{var}(\pi_t) \right]
\] (7)

Several results stand out. First, in a way consistent with the analysis presented in Section 3 on IRFs and consumption and income multipliers, a MFFS generates...
larger fluctuations than a DFFS in the output gap, the inflation gap and the consumption gap. Consequently, a MFFS generates larger welfare losses than a DFFS. The losses are moderate (6 percent of steady state consumption) under a DFFS with a standard Taylor rule and they are 1 percent of steady state consumption under a DFFS with a strict inflation targeting rule. They become larger (more than 25 percent of steady state consumption) when the increase in public expenditure is financed through money, that is under a MFFS. Similar results hold in a standard representative agent economy. Also in that case a MFFS is welfare detrimental with respect to a DFFS. An aspect was not considered in Gali (2020a). In a borrower-saver framework, the redistribution channel of the stimuli contribute to enlarge the difference between a MFFS and a DFFS. For example, consumption losses increase by 20 percentage points in a MFFS with respect to a DFFS in a two-agent economy. In a standard representative agent economy, the increase in the consumption loss is instead of 11 percentage points. We can therefore state that the redistributive effects of the stimuli are strongly welfare detrimental.

Table 4: Welfare analysis

<table>
<thead>
<tr>
<th></th>
<th>MFFS</th>
<th>DFFS ($\phi_x = 1.5$)</th>
<th>DFFS ($\pi_t = 0$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RANK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sigma(x_t)$</td>
<td>1.58</td>
<td>1.09</td>
<td>0.64</td>
</tr>
<tr>
<td>$\sigma(\pi_t)$</td>
<td>0.40</td>
<td>0.17</td>
<td>0</td>
</tr>
<tr>
<td>\mathcal{L}</td>
<td>0.15</td>
<td>0.04</td>
<td>0.008</td>
</tr>
<tr>
<td>TANK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sigma(x_t)$</td>
<td>1.6</td>
<td>0.82</td>
<td>0.47</td>
</tr>
<tr>
<td>$\sigma(\tilde{c}_t)$</td>
<td>1.9</td>
<td>1.57</td>
<td>1.44</td>
</tr>
<tr>
<td>$\sigma(\pi_t)$</td>
<td>0.55</td>
<td>0.24</td>
<td>0</td>
</tr>
<tr>
<td>\mathcal{L}</td>
<td>0.26</td>
<td>0.06</td>
<td>0.01</td>
</tr>
</tbody>
</table>

6 CONCLUSION

The current health and economic crisis calls for a urgent fiscal intervention in a scenario in which debt ratios are already large despite policy rates hit their zero lower bound for a relatively long time now. Empirical evidence shows large redistributive effects of monetary stimuli, if they are not compensated by effects of opposite sign triggered by a fiscal stimulus. In order to understand better these dynamics, we compare the redistribution effects of a MFFS versus the ones of a DFFS - both in normal times and at the zero lower bound.

We find that the redistribution from savers to borrowers is larger when we consider a MFFS. However, it generates also larger fluctuations than a DFFS in the output gap, inflation gap and consumption gap. Consequently, a MFFS generates larger welfare losses than a DFFS, particularly in a borrower-saver framework due to the additional presence of the consumption gap with respect
to a RANK model. To sum up, the redistributive effects are welfare detrimental. This the reason why only a borrower-saver framework can highlight the trade-off faced by a government to finance a fiscal stimulus by money creation, if it is not forbidden by the legislation. A MFFS has larger redistributive effects than a DFFS but it also implies a larger welfare loss due to the redistributive effect itself. A corollary of this result is that a MFFS implies always higher impact and cumulative fiscal multipliers than a DFFS. Under both financing schemes, fiscal multipliers are an increasing function of the share of borrowers and of the steady state borrowing limit.

In addition, a liquidity trap scenario amplifies the differences between MFFS and DFFS. A MFFS is effective at dampening the negative effect of the adverse demand shock in a TANK model. This is not valid in a RANK model (see Galì, 2020a).

Debortoli and Galì (2017) show that TANK models can provide a good and tractable approximation of the HANK models. They show that a TANK model approximates well, both quantitatively and qualitatively the dynamics of an HANK model in response to aggregate shocks. For this reason we believe that our results will be robust to the introduction of a more structured HANK model, even though studying the effects of this stimulus by using the latest generation of HANK models is also part of our research agenda. Considering a non-Walrasian labor market or investigating the effects of a MFFS in a medium scale model, as well as considering the possibility of relaxing the assumption of rational expectations are all important research questions that are left to future research.
References

A SENSITIVITY ANALYSIS

Under debt financing, monetary policy is assumed to pursue an inflation targeting mandate implying Equation (3). However, a key parameter in these comparisons is the coefficient in the interest rate rule ($\phi_\pi = 1.5$ is our benchmark). Next, we discuss the sensitivity of the redistribution channel of a DFFS regarding that coefficient.

We consider two alternative values with respect to our benchmark: i) $\phi_\pi = 5$; ii) $\phi_\pi \to \infty$, as in Galì (2019). Fig. 9 displays the response over time of output, inflation, debt and other macroeconomic variables of interest to an exogenous increase in government purchases, under the baseline calibration. The red lines with circles display the responses under the money-financing scheme, while the blue lines with diamonds show the response under the debt-financing scheme when $\phi_\pi = 1.5$; the dotted blue lines when $\phi_\pi = 5$ and the dashed blue lines when $\phi_\pi \to \infty$, or in other words, $\pi_t = 0$. For debt and taxes, we display the percent response of, respectively, real debt and taxes.

Fig. 9. Redistribution channel: The Role of IT rule.

Fig. 10 displays the response over time of the disaggregated consumption and disaggregated labor supply as well as the consumption ratio (C_b/C_s) and labor ratio (N_b/N_s) to an exogenous increase in government purchases. The higher the coefficient in the interest rate rule, the higher is the increase in nominal rates. It creates a consumption crowding-in solely when $\phi_\pi = 1.5$ (and in a money-financing regime). The higher ϕ_π, the higher the crowding out effect on aggregate consumption will be (and the money demand collapse). Figure 10 underlines the redistributive effects. The higher ϕ_π, the lower redistribution channel is, also if whatever combination we analyze it brings about a redistribution from savers to borrowers. However, an IT rule with $\phi_\pi \to \infty$ is able to redistribute 30% of what an IT rule with $\phi_\pi = 1.5$ is able to do, because of the interest rate exposure effect. The latter is increasing with the size of ϕ_π.

23
but it redistributes from borrowers to savers. In other words, the higher ϕ_π, the higher is the ability of the interest rate exposure effect of compensating the Fisher effect and minimizing it.

This is the reason why, as shown in Figure 11, the interest rate exposure effect is perfectly able to compensate the Fisher channel when $\phi_\pi \to \infty$.

Fig. 10. Redistribution channel: The Role of IT rule.

Fig. 11. RANK vs TANK: The role of IT rule

B WELFARE DERIVATIONS

B.1 Derivation of the Efficient Steady State

Let us to consider the steady state efficient equilibrium. It establishes the conditions under which a zero inflation ($\pi = 1$) steady state is efficient. Indeed,
it measures the subsidy/tax needed in the decentralized equilibrium in order to obtain the efficiency of the steady state allocation. First of all, we consider a Social Planner that maximizes the following welfare function in steady state

\[U = \lambda U^b (c^b, n^b) + (1 - \lambda) U^s (c^s, n^s) \] \hspace{1cm} (8)

where \(\lambda \) is a Pareto weight \(\lambda \in [0, 1] \) and where \(U^j (c^j, n^j) \) is the per-period utility function of type \(j = \{b, s\} \) household. As in the numerical analysis, we assume that real balances have a negligible weight in utility relative to consumption or employment, so that they do not affect welfare results.\(^{14} \) The Social Planner maximizes the welfare function under the constraints given by the production function,

\[y = n; \] \hspace{1cm} (9)

the resource constraint,

\[c + g = y; \] \hspace{1cm} (10)

and the aggregations of consumption and labor given respectively by:

\[c = \lambda c^b + (1 - \lambda) c^s, \] \hspace{1cm} (11)
\[n = \lambda n^b + (1 - \lambda) n^s. \] \hspace{1cm} (12)

Combining the constraints in a unique constraint, we get

\[\lambda c^b + (1 - \lambda) c^s + g = \lambda n^b + (1 - \lambda) n^s. \] \hspace{1cm} (13)

The Lagrangian implied is

\[U = \lambda U^b (c^b, n^b) + (1 - \lambda) U^s (c^s, n^s) - \mu_1 \left[\lambda c^b + (1 - \lambda) c^s + g - \lambda n^b - (1 - \lambda) n^s \right]. \] \hspace{1cm} (14)

Taking the first order conditions with respect to \(c^b, n^b, c^s, n^s \), we get

\[\begin{align*}
\lambda U^b_c &= \mu_1 \lambda, \\
\lambda U^b_n &= \mu_1 \lambda, \\
(1 - \lambda) U^s_c &= -\mu_1 (1 - \lambda), \quad \text{and} \\
(1 - \lambda) U^s_n &= -\mu_1 (1 - \lambda).
\end{align*} \]

Notice that FOCs imply

\[\begin{align*}
U^b_c &= U^b_c, \\
U^b_n &= U^b_n
\end{align*} \]

and that

\[\begin{align*}
c^b &= c^s = c, \quad \text{and} \\
n^b &= n^s = n.
\]

\(^{14}\)We assume that \(\chi \to 0 \). We do not want that welfare results on MFFS are driven by the presence of real balances in the utility function. We adopt a conservative assumption.
Hence,

\[\frac{U^b_n}{U^b_c} = \frac{U^n_s}{U^n_c} = -\frac{y}{n} = -1 \]

that comes from \(y = n \).

It can be shown that the standard subsidy applies. Indeed, in the decentralized equilibrium of the labor market, the labor supply choices are given by the following equations

\[w = -\frac{U^b_n}{\chi_b U^b_c} \]
\[w = -\frac{U^n_s}{\chi_s U^n_c} \]

while the labor demand is given according to

\[w = mc = \frac{\epsilon}{\epsilon - 1}. \]

The equilibrium in the labor market implies

\[\frac{\epsilon}{\epsilon - 1} = \lambda \left(-\frac{U^b_n}{\chi_b U^b_c} \right) + (1 - \lambda) \left(-\frac{U^n_s}{\chi_s U^n_c} \right). \]

And, if as we have assumed in our model \(\chi_b = \chi_s = 1 \), then

\[-\frac{\epsilon}{\epsilon - 1} = \lambda \left(\frac{U^b_n}{U^b_c} \right) + (1 - \lambda) \left(\frac{U^n_s}{U^n_c} \right). \]

To get the efficient equilibrium, it must hold that \(\frac{\epsilon}{\epsilon - 1} = 1 \). Thus, a standard employment subsidy is sufficient to get the result, so that in the decentralized equilibrium, the labor demand becomes

\[w \left(1 - \tau_L \right) = mc = \frac{\epsilon - 1}{\epsilon}. \] (15)

It implies that the decentralized equilibrium will be equal to the efficient one if:

\[-1 = -\frac{\epsilon - 1}{\epsilon \left(1 - \tau_L \right)} = \lambda \left(\frac{U^b_n}{U^b_c} \right) + (1 - \lambda) \left(\frac{U^n_s}{U^n_c} \right) \]

implying

\[1 = -\frac{\epsilon - 1}{\epsilon \left(1 - \tau_L \right)} \]

and thus, solving for \(\tau_L \) we get the optimal subsidy,

\[\tau_L = 1 - \frac{\epsilon - 1}{\epsilon} = \frac{1}{\epsilon}. \] (16)
B.2 Derivation of the Welfare Based Loss Function

We can now move to the second order approximation of the household utility function

\[W_0 = E_0 \left(\sum_{t=0}^{\infty} \beta^t U_t \right) \]
\[\text{where} \]

\[U_t = \tilde{\lambda} U \left(c_t^b, n_t^b \right) + \left(1 - \tilde{\lambda} \right) U \left(c_t^s, n_t^s \right) \]

Following Woodford (2002), we take the second order approximation around the efficient steady state, ignoring terms of order three and higher, and also exogenous terms, so that

\[
U_t - U \approx \tilde{\lambda} \left[U^b_c \left(c_t^b - c^b \right) + \frac{1}{2} U^b_{cc} \left(c_t^b - c^b \right)^2 \right] + \\
+ \left(1 - \tilde{\lambda} \right) \left[U^s_c \left(c_t^s - c^s \right) + \frac{1}{2} U^s_{cc} \left(c_t^s - c^s \right)^2 \right] \\
+ \tilde{\lambda} \left[U^b_n \left(n_t^b - n^b \right) + \frac{1}{2} U^b_{nn} \left(n_t^b - n^b \right)^2 \right] + \\
+ \left(1 - \tilde{\lambda} \right) \left[U^s_n \left(n_t^s - n^s \right) + \frac{1}{2} U^s_{nn} \left(n_t^s - n^s \right)^2 \right]
\]

Now, factoring out the marginal utility of consumption and labor for each type of household:

\[
U_t - U \approx \tilde{\chi} U^b_c \left(c_t^b - c^b \right) + \frac{1}{2} U^b_{cc} \left(c_t^b - c^b \right)^2 + \left(1 - \tilde{\chi} \right) U^s_c \left(c_t^s - c^s \right) + \frac{1}{2} U^s_{cc} \left(c_t^s - c^s \right)^2 \\
+ \tilde{\chi} U^b_n \left(n_t^b - n^b \right) + \frac{1}{2} U^b_{nn} \left(n_t^b - n^b \right)^2 + \left(1 - \tilde{\chi} \right) U^s_n \left(n_t^s - n^s \right) + \frac{1}{2} U^s_{nn} \left(n_t^s - n^s \right)^2.
\]

By using the FOCs of the efficient steady state, that is for

\[
\tilde{\chi} U^b_c = \mu_1 \lambda \\
\tilde{\chi} U^b_n = \mu_1 \lambda \\
\left(1 - \tilde{\chi} \right) U^s_c = -\mu_1 (1 - \lambda) \\
\left(1 - \tilde{\chi} \right) U^s_n = -\mu_1 (1 - \lambda)
\]

it becomes

\[
U_t - U \approx \lambda \mu_1 \left[c_t^b - c^b \right] + \frac{1}{2} U^b_{cc} \left(c_t^b - c^b \right)^2 \right] + (1 - \lambda) \mu_1 \left[(c_t^s - c^s) + \frac{1}{2} U^s_{cc} \left(c_t^s - c^s \right)^2 \right] \\
- \lambda \mu_1 \left[n_t^b - n^b \right] + \frac{1}{2} U^b_{nn} \left(n_t^b - n^b \right)^2 \right] - (1 - \lambda) \mu_1 \left[(n_t^s - n^s) + \frac{1}{2} U^s_{nn} \left(n_t^s - n^s \right)^2 \right].
\]
Given the preferences in the period utility of each household

\[
\frac{U_{bc}}{U_{cc}} = \frac{U_{sc}}{U_{ss}} = \frac{\sigma}{C}
\]

\[
\frac{U_{bn}}{U_{nn}} = \frac{U_{sn}}{U_{ss}} = \frac{\varphi}{n}.
\]

substituting above and collecting first order terms, we obtain:

\[
U_t - U \approx \mu_1 \left[\lambda (c_t^b - c^b) + (1 - \lambda) (c_t^s - c^s) \right] \\
- \mu_1 \left[\lambda (n_t^b - n^b) + (1 - \lambda) (n_t^s - n^s) \right] \\
- \mu_1 \frac{\sigma}{2C} \left[\lambda (c_t^b - c^b)^2 + (1 - \lambda) (c_t^s - c^s)^2 \right] \\
- \mu_1 \frac{\varphi}{2n} \left[\lambda (n_t^b - n^b)^2 + (1 - \lambda) (n_t^s - n^s)^2 \right].
\]

By considering aggregate consumption, \(c_t = \lambda c_t^b + (1 - \lambda) c_t^s \), and taking the first order approximation around the efficient steady state, the previous objective function can be rewritten as

\[
U_t - U \approx \mu_1 (c_t - c) \\
- \mu_1 \left[\lambda (n_t^b - n^b) + (1 - \lambda) (n_t^s - n^s) \right] \\
- \mu_1 \frac{\sigma}{2C} \left[\lambda (c_t^b - c^b)^2 + (1 - \lambda) (c_t^s - c^s)^2 \right] \\
- \mu_1 \frac{\varphi}{2n} \left[\lambda (n_t^b - n^b)^2 + (1 - \lambda) (n_t^s - n^s)^2 \right].
\]

Given the resource constraint implied by the Rotemberg model, the second order approximation of that constraint implies

\[
C \left(\tilde{c}_t + \frac{1}{2} \tilde{c}_t^2 \right) = \frac{y}{\tilde{y}_t} \left(\frac{y}{\tilde{y}_t} \right) - \frac{\phi_p}{2} \frac{y\pi_t^2}{\tilde{y}_t^2}
\]

Then, under the efficient steady state\(^{15}\),

\[
c_t - c = \tilde{c}_t + \frac{1}{2} \tilde{c}_t^2 = \frac{\tilde{y}_t}{2} \left(\frac{y}{\tilde{y}_t} \right) - \frac{\phi_p}{2} \frac{y\pi_t^2}{\tilde{y}_t^2}
\]

the welfare function becomes

\[
U_t - U \approx \mu_1 y \left(\frac{\tilde{y}_t}{2} \left(\frac{y}{\tilde{y}_t} \right) - \frac{\phi_p}{2} \frac{y\pi_t^2}{\tilde{y}_t^2} \right) \\
- \mu_1 \left[\lambda (n_t^b - n^b) + (1 - \lambda) (n_t^s - n^s) \right] \\
- \mu_1 \frac{\sigma}{2C} \left[\lambda (c_t^b - c^b)^2 + (1 - \lambda) (c_t^s - c^s)^2 \right] \\
- \mu_1 \frac{\varphi}{2n} \left[\lambda (n_t^b - n^b)^2 + (1 - \lambda) (n_t^s - n^s)^2 \right],
\]

\(^{15}\)As in Benigno and Woodford (2003), we can omit exogenous terms like \(g_t \). Also notice that its steady state is zero in the efficient steady state.
from
\[n^b_t - n^b = n^b_t \left(\bar{n}^b_t + \frac{1}{2} (\bar{\bar{n}}^b_t)^2 \right) = n \left(\bar{n}^b_t + \frac{1}{2} (\bar{\bar{n}}^b_t)^2 \right) \]
\[n^n_t - n^n = n^n_t \left(\bar{n}^n_t + \frac{1}{2} (\bar{\bar{n}}^n_t)^2 \right) = n \left(\bar{n}^n_t + \frac{1}{2} (\bar{\bar{n}}^n_t)^2 \right) \]

and then
\[
U_t - U \approx \mu_1 y \left(\bar{y}_t + \frac{1}{2} \bar{y}_t^2 - \frac{\phi P}{2} \bar{\bar{y}}_t \right) \\
- \mu_1 \left[\lambda n \left(\bar{n}^b_t + \frac{1}{2} (\bar{\bar{n}}^b_t)^2 \right) + (1 - \lambda) n \left(\bar{n}^n_t + \frac{1}{2} (\bar{\bar{n}}^n_t)^2 \right) \right] \\
- \mu_1 \frac{\sigma}{2 c} \left[\lambda (c^n_t - c^b)^2 + (1 - \lambda) (c^n_t - c^b)^2 \right] \\
- \mu_1 \frac{\varphi}{2 n} \left[\lambda (n^n_t - n^n)^2 + (1 - \lambda) (n^n_t - n^n)^2 \right]
\]
or
\[
\mu_1 (U_t - U) \approx y \left(\left(\bar{y}_t + \frac{1}{2} \bar{y}_t^2 \right) - \frac{\phi P}{2} \bar{\bar{y}}_t \right) \\
- n \left(\lambda \bar{n}^b_t + (1 - \lambda) \bar{n}^n_t \right) - \frac{1}{2} n \left[\lambda \bar{n}^b_t^2 + (1 - \lambda) \bar{n}^n_t^2 \right] \\
- \frac{1}{2} \sigma c \left[\lambda (c^n_t - c^b)^2 + (1 - \lambda) (c^n_t - c^b)^2 \right] \\
- \frac{1}{2} \varphi n \left[\lambda (n^n_t - n^n)^2 + (1 - \lambda) (n^n_t - n^n)^2 \right]
\]

Knowing that in steady state \(c^b = c^n = c = y \) and \(n^b = n^n = n = y \) and from
\[
(c^n_t - c^n)^2 = (c^b)^2 (\bar{c}^n_t)^2 = (c)^2 (\bar{c}^n_t)^2 \\
(c^n_t - c^n)^2 = (c^n)^2 (\bar{c}^n_t)^2 = (c)^2 (\bar{c}^n_t)^2 \\
(n^n_t - n^n)^2 = (n^n)^2 (\bar{n}^n_t)^2 = (n)^2 (\bar{n}^n_t)^2 \\
(n^n_t - n^n)^2 = (n^n)^2 (\bar{n}^n_t)^2 = (n)^2 (\bar{n}^n_t)^2
\]
Substituting and rearranging
\[
\frac{\mu_1 (U_t - U)}{y} \approx \left(\bar{y}_t + \frac{1}{2} \bar{y}_t^2 \right) - \frac{\phi P}{2} \bar{\bar{y}}_t \\
- \left(\lambda \bar{n}^b_t + (1 - \lambda) \bar{n}^n_t \right) - \frac{1}{2} \left[\lambda \bar{n}^b_t^2 + (1 - \lambda) \bar{n}^n_t^2 \right] \\
- \frac{1}{2} \sigma \left[\lambda (\bar{c}^b)^2 + (1 - \lambda) \bar{y}_t^2 (\bar{c}^n_t)^2 \right] \\
- \frac{1}{2} \varphi \left[\lambda \bar{n}^n_t^2 + (1 - \lambda) \bar{n}^n_t^2 \right].
\]

29
Further, from the production function we know that
\[\tilde{y}_t = \hat{n}_t = \lambda \hat{n}_t^b + (1 - \lambda) \hat{n}_t^s \]
and therefore, simplifying and collecting terms, the objective function is
\[
\frac{\mu_1 (U_t - U)}{y} \approx \frac{1}{2} \tilde{y}_t^2 - \frac{\phi_P}{2} \pi_t^2 - \frac{1}{2} \sigma \left[\lambda (\tilde{c}_t^b)^2 + (1 - \lambda) (\tilde{c}_t^s)^2 \right] - \frac{1}{2} (1 + \varphi) \left[\lambda (\hat{n}_t^b)^2 + (1 - \lambda) (\hat{n}_t^s)^2 \right].
\]

Notice that, at this point, the welfare-based loss function is fully quadratic. Following Ferrero et al. (2018), we rewrite it to obtain terms with a more meaningful economic interpretation. Hence, we combine terms in output and consumption, as follows
\[
\frac{\mu_1 (U_t - U)}{y} \approx \frac{1}{2} \left\{ \sigma \left[\lambda (\tilde{c}_t^b)^2 + (1 - \lambda) (\tilde{c}_t^s)^2 \right] - \tilde{y}_t^2 \right\} - \frac{1}{2} (1 + \varphi) \left[\lambda (\hat{n}_t^b)^2 + (1 - \lambda) (\hat{n}_t^s)^2 \right] - \frac{\phi_P}{2} \pi_t^2 - ...
\]

Now we rewrite the objective function adding and subtracting \(\frac{1}{2} (\sigma + \varphi) \tilde{y}_t^2 \)
\[
\frac{\mu_1 (U_t - U)}{y} \approx \frac{1}{2} \left\{ \sigma \left[\lambda (\tilde{c}_t^b)^2 + (1 - \lambda) (\tilde{c}_t^s)^2 \right] - \tilde{y}_t^2 \right\} - \frac{1}{2} (1 + \varphi) \left[\lambda (\hat{n}_t^b)^2 + (1 - \lambda) (\hat{n}_t^s)^2 \right] + \frac{1}{2} (\sigma + \varphi) \tilde{y}_t^2 - \frac{\phi_P}{2} \pi_t^2 + t.i.p.
\]
where \(t.i.p \) collects all terms independent of policy. We can put \(\frac{1}{2} \sigma \tilde{y}_t^2 \) into the consumption terms and \(\frac{1}{2} (1 + \varphi) \tilde{y}_t^2 \) into the labor terms
\[\tilde{U}_t \approx \frac{1}{2} \left\{ \sigma \left[\lambda (\tilde{c}_t^b)^2 + (1 - \lambda) (\tilde{c}_t^s)^2 \right] + \sigma \tilde{y}_t^2 + \frac{1}{2} (1 + \varphi) \left[\lambda (\hat{n}_t^b)^2 + (1 - \lambda) (\hat{n}_t^s)^2 - \tilde{y}_t^2 \right] - (\sigma + \varphi) \tilde{y}_t^2 \right\} + \frac{\phi_P}{2} \pi_t^2 - \frac{\phi_P}{2} \pi_t^2 + t.i.p.
\]
where \(\tilde{U}_t = \frac{\mu_1 (U_t - U)}{y} \).

Now notice that
\[\lambda (\tilde{c}_t^b)^2 + (1 - \lambda) (\tilde{y}_t)^2 (\tilde{c}_t^s)^2 - \tilde{y}_t^2 = \lambda \left((\tilde{c}_t^b)^2 - \tilde{y}_t^2 \right) + (1 - \lambda) \left((\tilde{c}_t^s)^2 - \tilde{y}_t^2 \right) \]
using again the resource constraint to replace the differences between each type’s consumption and output, we can rewrite
\[\lambda (\tilde{c}_t^b)^2 + (1 - \lambda) (\tilde{y}_t)^2 (\tilde{c}_t^s)^2 - \tilde{y}_t^2 = \lambda (1 - \lambda) (\tilde{c}_t^b - \tilde{c}_t^s)^2 \]

Then from the labor supply conditions,
\[
\begin{align*}
w_t &= (n_t^b)^\varphi (c_t^b)^\sigma \\
w_t &= (n_t^s)^\varphi (c_t^s)^\sigma
\end{align*}
\]

30
then

\[(n_t^b)^\varphi (c_t^b)^\sigma = (n_t^s)^\varphi (c_t^s)^\sigma,\]

and also from

\[w_t n_t^b = (n_t^b)^{1+\varphi} (c_t^b)^\sigma \]
\[w_t n_t^s = (n_t^s)^{1+\varphi} (c_t^s)^\sigma\]

then, the first order approximation gives us:

\[(1 + \varphi) \hat{n}_t^b + \sigma \hat{c}_t^b = w_t + \hat{n}_t^b \]
\[(1 + \varphi) \hat{n}_t^s + \sigma \hat{c}_t^s = w_t + \hat{n}_t^s \]

Then, by aggregating

\[\lambda (w_t + \hat{n}_t^b) + (1 - \lambda) (w_t + \hat{n}_t^s) = w_t + \hat{n}_t = (1 + \varphi) \hat{n}_t + \sigma \hat{c}_t \]
\[\lambda (w_t + \hat{n}_t^b) + (1 - \lambda) (w_t + \hat{n}_t^s) = w_t + \hat{n}_t = (1 + \varphi) \hat{n}_t + \sigma \hat{y}_t \]

and given that \(\hat{n}_t = \lambda \hat{n}_t^b + (1 - \lambda) \hat{n}_t^s\),

\[w_t + \hat{n}_t = (1 + \varphi) \hat{n}_t + \sigma \hat{y}_t = (1 + \varphi) (\lambda \hat{n}_t^b + (1 - \lambda) \hat{n}_t^s) + \sigma \hat{y}_t \]

consequently,

\[(1 + \varphi) (\lambda \hat{n}_t^b + (1 - \lambda) \hat{n}_t^s) + \sigma \hat{y}_t = (1 + \varphi) \hat{n}_t^b + \sigma \hat{c}_t^b \]

and by collecting terms in \(\hat{n}_t^b\)

\[\hat{n}_t^b = \hat{n}_t^s - \frac{\sigma}{1 + \varphi (1 - \lambda)} (\hat{c}_t^b - \hat{y}_t) \]

and

\[\hat{n}_t^s = \frac{(\hat{n}_t - \lambda \hat{n}_t^b)}{1 - \lambda} \]

and by substituting the last one into the previous one and solving for \(\hat{n}_t^b\),

\[\hat{n}_t^b = \hat{n}_t - \frac{\sigma}{1 + \varphi} (\hat{c}_t^b - \hat{y}_t) = \hat{y}_t - \frac{\sigma}{1 + \varphi} (\hat{c}_t^b - \hat{y}_t) \]

Similarly, we find

\[\hat{n}_t^s = \hat{y}_t - \frac{\sigma}{1 + \varphi} (\hat{c}_t^s - \hat{y}_t) \]

Then, using the first order approximation of the resource constraint we can rewrite

\[\hat{n}_t^b = \hat{y}_t - \frac{\sigma}{1 + \varphi} (1 - \lambda) (\hat{c}_t^b - \hat{c}_t^s) \]
\[\hat{n}_t^s = \hat{y}_t + \frac{\sigma}{1 + \varphi} \lambda (\hat{c}_t^b - \hat{c}_t^s) \]

31
substituting everything into the objective function

\[
\tilde{U}_t \simeq -\frac{1}{2} \left\{ +\frac{1}{2} (1 + \varphi) \lambda \left(\tilde{y}_t \left[\frac{\lambda (1 - \lambda) (\tilde{c}_t - \tilde{c}_i) + \lambda (1 - \lambda) (\tilde{c}_t - \tilde{c}_i) \right] \right) \right. \\
+ (1 - \lambda) \left(\tilde{y}_t \right) - \tilde{y}_t^2 \\
- (\sigma + \varphi) \tilde{y}_t^2 - \phi_p \pi_t^2 + t.i.p.
\]

Let us to consider only the terms in the squared brackets

\[
\left[\lambda \left(\tilde{y}_t - \frac{\sigma}{1 + \varphi} (1 - \lambda) (\tilde{c}_t - \tilde{c}_i) \right)^2 + (1 - \lambda) \left(\tilde{y}_t + \frac{\sigma}{1 + \varphi} \lambda (\tilde{c}_t - \tilde{c}_i) \right)^2 - \tilde{y}_t \right]
\]

and expand the two squared terms

\[
\lambda \left(\tilde{y}_t^2 + \left[\frac{\sigma}{1 + \varphi} (1 - \lambda) (\tilde{c}_t - \tilde{c}_i) \right]^2 - 2 \frac{\sigma}{1 + \varphi} (1 - \lambda) (\tilde{c}_t - \tilde{c}_i) \tilde{y}_t \right) + \\
+ (1 - \lambda) \left(\tilde{y}_t^2 + \left[\frac{\sigma}{1 + \varphi} \lambda (\tilde{c}_t - \tilde{c}_i) \right]^2 + 2 \frac{\sigma}{1 + \varphi} \lambda (\tilde{c}_t - \tilde{c}_i) \tilde{y}_t \right) - \tilde{y}_t^2.
\]

By simplifying, we obtain:

\[
\tilde{y}_t^2 + \lambda (1 - \lambda) \left(\frac{\sigma}{1 + \varphi} (\tilde{c}_t - \tilde{c}_i) \right)^2 + (1 - \lambda) \lambda \left(\frac{\sigma}{1 + \varphi} (\tilde{c}_t - \tilde{c}_i) \right)^2 - \tilde{y}_t^2
\]

and by substituting in the objective function and by collecting terms

\[
\tilde{U}_t \simeq -\frac{1}{2} \left\{ (\varphi + \sigma) \tilde{y}_t^2 + \lambda (1 - \lambda) \sigma \left(\frac{1 + \sigma + \varphi}{1 + \varphi} \right) (\tilde{c}_t - \tilde{c}_i)^2 \right\} - \frac{\phi_p}{2} \pi_t^2 + t.i.p.
\]

where \textit{t.i.p.} indicates terms independent from policy. In particular, with a production function where \(y_t = A_t n_t \) and \(A_t \) representing an exogenous TFP shocks, the implied welfare function would be

\[
\tilde{U}_t \simeq -\frac{(\varphi + \sigma)}{2} E_0 \beta^t \sum_{t=0}^{\infty} \left(\varphi + \sigma \right) \tilde{x}_t^2 + \lambda (1 - \lambda) \sigma \left(\frac{1 + \sigma + \varphi}{1 + \varphi} \right) \tilde{c}_t^2 + \phi_p \pi_t^2 + t.i.p.
\]

(19)

where, we define \(\tilde{c}_t = \tilde{c}_t^0 - \tilde{c}_i^0 \) as the consumption gap we have defined \(\tilde{x}_t = \tilde{y}_t - y_t^{Eff} \), with \(y_t^{Eff} = \frac{1 + \sigma}{\sigma + \varphi} a_t \) and \(a_t = \ln (A_t / A) \) the log-deviation of the TFP from its steady state. Otherwise, in the absence of this shock, as in our particular model economy, \(\tilde{x}_t = \tilde{y}_t \). Multiplying everything by -1, the Loss function becomes

\[
\tilde{W}_t \simeq \frac{1}{2} E_0 \beta^t \sum_{t=0}^{\infty} \left(\varphi + \sigma \right) \tilde{x}_t^2 + \lambda (1 - \lambda) \sigma \left(\frac{1 + \sigma + \varphi}{1 + \varphi} \right) \tilde{c}_t^2 + \phi_p \pi_t^2 + t.i.p.
\]

(20)
Notice that as in Ferrero et al (2018) the welfare function depends, not only on standard output gap and inflation but also on the consumption gap between borrower and saver consumption. Since all terms are squared terms, the larger the gaps the higher will be the welfare loss. To interpret our numerical results in table (4), it is indeed important to analyze the role played by the redistributive channel of each stimulus in affecting not only inflation and output but also the consumption gap, which is indeed crucial to explain the results.