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.

Résumé: Cet article présente un cadre économétrique général visant à mod-
éliser conjointement les fluctuations de courbes de taux associées à différents
émetteurs obligataires. Les titres sous-jacents à ces courbes peuvent différer
en termes de qualité de crédit de l’émetteur et/ou en termes de liquidité. Les
facteurs de risque sont affectés par des chocs gaussiens dont les covariances
dépendent du régime qui prévaut au moment du choc. Les tendances des fac-
teurs de risque dépendent également des régimes. Le processus suivi par les
régimes est une chaîne de Markov dont les probabilités de transition sont non-
homogènes sous la mesure historique. Bien que riche, le modèle permet de
valoriser les obligations à partir de simples formules récursives. Plusieurs ex-
emples numériques sont présentés. En particulier, nous montrons comment les
changements de régime peuvent être mis à profit pour modéliser des phénomènes
de contagion sectorielle. Une extension visant à intégrer les notes attribuées par
les agences de notation est également proposée.

Classifications JEL: E43, E44, E47, G12, G24.
Mots clés: risque de crédit, risque de liquidité, structure par terme des taux

d’intérêt, modèle affine, changement de régime, processus Car.

Abstract: In this paper, we present a general discrete-time affine framework
aimed at jointly modeling yield curves associated with different debtors. The
underlying fixed-income securities may differ in terms of credit quality and/or
in terms of liquidity. The risk factors follow conditionally Gaussian processes,
with drifts and variance-covariance matrices that are subject to regime shifts
described by a Markov chain with (historical) non-homogenous transition prob-
abilities. While flexible, the model remains tractable. In particular, bond prices
are given by quasi-explicit formulas. Various numerical examples are proposed,
including a sector-contagion model and credit-rating modeling.

JEL codes: E43, E44, E47, G12, G24.
Keywords: credit risk, liquidity risk, term structure, affine model, regime

switching, Car process.
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1. Introduction

Though already strong before the recent financial crisis, the case for including regime shifts
within term-structure models for defaultable bonds is obviously stronger now (see, amongst
many others, Christensen, Lopez and Rudebusch, 2009 [16]). This paper proposes a general
affine term-structure framework aimed at jointly modeling several yield curves associated
with different obligors, in the presence of regime switching.

Motivated by derivative-pricing or credit-risk-management objectives, a large strand of
the literature related to fixed-income securities has focused on the joint modeling of sev-
eral yield curves. In this context, Jarrow, Lando, Turnbull (1997) [45], Lando (1998) [50]
or Duffie and Singleton (1999) [28] have highlighted the potential of affine term-structure
frameworks to jointly model yield curves associated with various obligors subject to default
risk. Their intensity-based –or reduced-form– approaches used to model defaults differ from
the more structural approaches originating in Black and Scholes (1973) [10] and Merton
(1974) [55].1 Whereas the intensity-based framework was originally designed to account for
default risk, it is also appropriate to model liquidity-pricing effects and it can accomodate
time-varying recovery rates as well (see Duffie and Singleton (1999) [28]). Numerous fur-
ther developments have illustrated the flexibility and tractability of affine-term structure
models to capture the comovements of different yield curves (see e.g. Duffee, 1999 [25] or
Gourieroux, Monfort and Polimenis, 2006 [38]).

There is strong evidence of regime switching in the dynamics of interest rates (see, e.g.,
Hamilton, 1988 [41] or Cai, 1994 [11]). Regime shifts have been successfully introduced in
term-structure models of risk-free interest rates by, amongst others, Bansal and Zhou (2002)
[5], Monfort and Pegoraro (2007) [58], Dai, Singleton and Yang (2007) [19] or Ang Bekaert
and Wei (2008) [3]. Whereas these contributions put forward the importance of modeling
regime switching in yield-curve models, a few has been done to integrate such a feature
in term-structure models of defaultable bonds. However, empirical studies point to the
existence of different regimes in the default risk valuation (see, e.g., Davies, 2004 [22] and
2008 [23] or Alexander and Kaeck, 2008 [1]). From a theoretical point of view, Hackbarth,
Miao and Morellec (2006) [40] provide a theoretical model to explain the dependence of
credit spread on business-cycle regimes. In the same vein, Bhamra, Kuehn and Strebulaev
(2007) [8] and David (2008) [21] adopt structural models including regime switching to
assess the influence of different states of the economic cycles on the credit-risk premia.

In our framework, the state variables follow discrete-time conditionally Gaussian pro-
cesses.2 Extending the work of Gourieroux, Monfort and Polimenis (2006) [38], the Gaus-
sian processes present drifts and variance-covariance matrices that are subject to regime
shifts. The latter are described by a Markov chain with (historical) non-homogenous trans-
ition probabilities. Particular attention is paid to the tractability of the model and its
estimation. Tractability is notably obtained through an extensive use of Car’s –Compound
autoregressive processes– properties (see, e.g. Darolles, Gourieroux and Jasiak, 2006 [20]),
which leads to quasi-explicit fomulas for bond prices. Both historical and risk-neutral dy-
namics are explicitly modeled, which is helpful for choosing appropriate specifications under
the historical measure, for dealing simultaneously with pricing and forecasting, for Value-

1Cathcart and El-Jahel, 2006 [13]) have shown that the two approaches (reduced-form and structural) are
somewhat reconcilable.

2While most of the earliest affine defaultable-bond term-struture models are in continuous-time form (see
e.g. Duffie and Singleton (1999) [28]), Gourieroux, Monfort and Polimenis (2006) [38] have shown that
discrete-time affine models are well-suited to credit-risk modeling and that they present higher flexibility
than their continuous-time counterparts. In particular, the discrete-time framework makes it easier to
properly specifiy the dynamics of the observable risk factors under the historical probability measure.
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at-Risk calculations or for Sharpe-ratio computations.3 We propose a sequential estimation
strategy, which is intended to facilitate the estimation of unobservable factors (including
latent risk factors and regimes).

The modeling of defaults is based on the so-called “doubly-stochastic” assumption: correl-
ations between default events arise solely through dependence on some common underlying
stochastic factors –also termed with “risk factors”– which influence the default probabilities
of every single loans.4 Some of the factors may be unobserved. In this sense, our model
accomodates frailty. This feature is advocated by recent papers suggesting that includ-
ing only observable covariates in default-intensity specifications results in poorly-estimated
conditional probabilities of default (see e.g. Lando and Nielsen, 2008 [51] or Duffie et al.,
2009 [27]).

Including regime shifts in a discrete-time term-structure model may affect pricing through
several channels: (i) regimes affect the historical and risk-neutral dynamics of the risk
factors, (ii) regimes appear in the stochastic discount factor (s.d.f.) –which implies that
regime-transition risk is priced– and (iii) regimes appear in the default-intensity functions.
This results in a large degree of flexibility in the model specifications, which is illustrated
by several numerical examples in the paper. In particular, since default intensitites can
be affected by the regime variable, our model is appropriate to capture default clustering.
Indeed, if one regime implies dramatic increases in the default probabilities of all or part
of the debtors, numerous defaults will simultaneously take place during this regime.

Beyond the enrichment of the specifications of the risk factors and those of the default
intensities by introducing nonlinearities, the regime-switching feature can be exploited to
handle specific forms of contagions. Contagion effects, whose consequences are cascades
of subsequent spread changes, is explained by the existence of close ties between firms
(see, e.g., Jarrow and Yu, 2001 [47], Davies and Lo, 2001 [24] or Giesecke, 2004 [36]).
Contagion takes place when the default probability of any debtor can be affected by the
default event of another one. Given that our baseline model relies on the doubly-stochastic
or conditional-dependence assumption –which states that, conditional to the underlying
factors and regimes, the default events of the firms in a portfolio are independent– direct
contagion effects can not be captured. Nevertheless, we can model specific contagion effects
in two distinct ways. First, our framework can accomodate the specific contagion case where
one entity –or, for the sake of tractability, a small number of them– affects the default
probability of the others: it suffices to make one of the regimes corresponds to the default
state of this entity. Second, the regime-switching feature can be exploited in order to capture
“sector-contagion” phenomena. The sectors can represent different industries or different
geographical areas. Each sector can be “infected” or not. When a sector gets infected, the
default intensities of its constituents (the debtors) shift upwards. In this context, sector
contagion stems from the parameterizations of the matrix of regime-transition probabilities.
For instance, you can easily model infection probabilities that depend positively on the
number of sectors already infected.

Our baseline model considers only one credit event: the default of the debtor. However,
credit events include more generally the changes in credit ratings like these attributed by
agencies like Moody’s, Standard & Poor’s or Fitch. There are several reasons why it may be
desirable to model not only default events but also rating transitions (see Cantor, 2004 [12]
or Gagliardini and Gourieroux, 2001 [35]).5 It turns out that our framework can be adapted

3Regarding the latter point, see Duffee (2010) [26].
4In our framework, these shocks include both Gaussian shocks and regime-shift shocks.
5Several of the main credit models currently being used in the industry, such as J.P. Morgan’s CreditMetrics

(1997) [48], draw on the credit-migration approach. For presentation, comparison and evaluation of these
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to accomodate time-varying credit-rating migrations along the lines of Lando (1998) [50]
while keeping quasi-explicit bond-pricing formulas.6

The remainder of the paper is organized as follows. Sections 2 and 3 respectively present
the historical and risk-neutral dynamics of the variables. Section 4 gives the bond-pricing
formulas with zero or non-zero recovery rates. Section 4 also provides numerical examples.
Section 5 deals with internal-consistency restrictions that arise when yields or asset returns
are included amongst the risk factors. In Section 6, we propose an estimation strategy.
Section 7 shows how the model accomodates the pricing of liquidity. Section 8 investigates
possible extensions of the framework: Subsection 8.1 deals with multi-lag dynamics of
the risk factors; Subsection 8.2 deals with the specific case where one of the Markov chains
coincides with the default state of a given entity and Subsection 8.4 shows how to introduce
rating-migration modeling in the framework. Section 9 concludes.

2. Information and historical dynamics

2.1. Information

The new information of the investors at date t is w
�
t = (z�t, y

�
t, x

�
t, d

�
t) where zt is a regime

variable that can take a finite number J of values, yt is a multivariate macroeconomic factor,
x
�
t = (x�

1,t
, . . . , x

�
N,t

) is a set of specific multivariate factors xn,t associated with debtor n,
and d

�
t = (d1,t, . . . , dN,t) is a set of binary variables indicating the default (dn,t = 1) or the

non-default (dn,t = 0) state of entity n. The whole information set of the investors at date t

is w
�
t = (w�

1, . . . , w
�
t). At this stage, we do not make any assumption about the observability

of these variables by the econometrician (this is done below in Section 6). These regimes
influence bond pricing through different channels (they will appear in the dynamics of
the risk factors yt and xn,t’s, in the stochastic discount factor and in the default-intensity
functions). In the baseline framework, the regimes are viewed as transitory: none of these
regimes is absorbing but this restriction is relaxed in a specific case presented in Subsection
8.2.

2.2. Historical dynamics

It is convenient to make the regime variable zt valued in {e1, . . . , eJ}, the set of column vec-
tors of the identity matrix IJ .7 The conditional distribution of zt given wt−1 is characterized
by the probabilities:

p
�
zt | wt−1

�
= π (zt | zt−1, yt−1) . (1)

The probability π(ej | ei, yt−1) that zt shifts from regime i to regime j between period
t − 1 and t, conditional on yt−1, is also denoted by πij,t−1. These specifications allow for
state-dependent transition probabilities, as in Gray (1996) [39], Ang and Bekaert (2002) [2]
or Dai, Singleton and Yang (2007) [19].

The conditional distribution of yt given zt and wt−1 is Gaussian and given by:

yt = µ (zt, zt−1) + Φyt−1 + Ω (zt, zt−1) εt (2)

models, see e.g. Gordy (2000) [37].
6Other examples of term-structure models allowing for time-varying rating-migration probabilities include

Bielecki and Rutkowski (2000) [9] and Wei (2003) [61].
7Indeed, this implies that any function of the regimes taking the value fj in the jth regime, say, is the

linear function of zt: f �zt with f � = (f1 . . . fJ).
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where the εt are independently and identically N(0, I) distributed. Specifications (1) and
(2) imply that, in the universe (zt, yt), zt Granger-causes yt, yt causes zt and there is
instantaneous causality between zt and yt. Moreover, in the universe wt = (zt, yt, xt, dt),
(xt, dt) does not cause (zt, yt). As noted by Ang, Bekaert and Wei (2008) [3], instantaneous
causality between zt and yt implies that the variances of the factors yt, conditional on wt−1,
embed a jump term reflecting the difference in drifts µ accross regimes. Such a feature,
that allows for conditional heteroskedasticity, is absent from the Dai, Singleton and Yang
(2007) [19] setting. However, it should be noted that our framework nests the case where
there is no instantaneous causality between zt and yt in the historical dynamics.8 Contrary
to Bansal and Zhou (2002) [5], matrix Φ is not regime-dependent: this is for the sake of
tractability when it comes to bond pricing.9

The xn,t’s, n = 1, . . . , N are assumed to be independent conditionally to (zt, yt, wt−1).
The conditional distribution of xn,t is Gaussian and defined by:

xn,t = q1n (zt, zt−1) + Q2nyt + Q3nyt−1 + Q4nxn,t−1 + Q5n (zt, zt−1) ηn,t (3)

where the shocks ηn,t are IIN(0, I). Specifications (1), (2) and (3) imply that, in the uni-
verse (zt, yt, xn,t), (zt, yt) causes xn,t, xn,t does not cause (zt, yt) and there is instantaneous
causality between (zt, yt) and xn,t. Moreover, denoting by xn,t the vector xt excluding xn,t,
(xn,t, dt) does not cause (zt, yt, xn,t) in the whole universe wt.

Finally, the dn,t’s, n = 1, . . . , N , are independent conditionally to (zt, yt, xt, wt−1) and
the conditional distribution of dn,t is such that:

p
�
dn,t = 1 | zt, yt, xt, wt−1

�
=

�
1 if dn,t−1 = 1,
1− exp (−λn,t) otherwise,

(4)

with λn,t = α
�
nzt + β

�
nyt + γ

�
nxn,t.

In other words, state 1 of dn,t is an absorbing state and exp (−λn,t) is the survival
probability. Since the default probability 1 − exp (−λn,t) is close to λn,t if λn,t is small,
λn,t is called the default intensity. The default intensity is expected to be postive, which is
not necessarily the case since the εt’s are Gaussian. However, the parameterization of the
model may make this extremely unfrequent.

So, in the universe (zt, yt, xn,t, dn,t), (zt, yt, xn,t) causes dn,t whereas dn,t does not causes
(zt, yt, xn,t) and there is instantaneous causality. In the whole universe wt, (xn,t, dn,t) does
not cause (zt, yt, xn,t, dn,t). The causality scheme is summarized in Figure 1.

Finally, let us consider the conditional Laplace transform of the distribution of (zt, yt)
given wt−1:

ϕt−1(u, v) = Et−1
�
exp

�
u
�
zt + v

�
yt

��
.

Proposition 1. The conditional Laplace transform of (zt, yt) given wt−1 is:

ϕt−1 (u, v) = exp
�
v
�Φyt−1 + [l1, . . . , lJ ] zt−1

�
, (5)

where li = log
�

J

j=1 πij,t−1 exp
�
uj + v

�
µ(ej , ei) + 1

2v
�Ω (ej , ei) Ω� (ej , ei) v

�
.

8Formally, this corresponds to µ (zt, zt−1) = µ (zt−1) and Ω (zt, zt−1) = Ω (zt−1).
9Indeed, the model of Bansal and Zhou (2002) [5] does not admit a closed-form exponential affine solution

(they proceed by linearizing the discrete-time Euler equations and by solving the resulting linear relations
for prices).

6



Figure 1: Causality scheme
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Proof. We have

ϕt−1 (u, v) = Et−1
�
exp

�
u
�
zt + v

�
yt

��

= Et−1
�
exp

�
u
�
zt + v

�
µ (zt, zt−1) + v

�Φyt−1 + v
�Ω (zt, zt−1) εt

��

= E
�
E{exp

�
u
�
zt + v

�
µ (zt, zt−1) + v

�Φyt−1+
v
�Ω (zt, zt−1) εt

�
| wt−1, zt} | wt−1

�

= exp(v�Φyt−1)E
�
exp

�
u
�
zt + v

�
µ (zt, zt−1)

�
×

E
�
exp

�
v
�Ω (zt, zt−1) εt | wt−1, zt

��
| wt−1

�

= exp(v�Φyt−1)E
�
exp

�
u
�
zt + v

�
µ (zt, zt−1)

�
×

1
2
v
�Ω (zt, zt−1) Ω� (zt, zt−1) v | wt−1

�

= exp
�
v
�Φyt−1 + [l1, . . . , lJ ] zt−1

�
.

Using the expression given for the li’s leads to the result.

This Laplace transform is not, in general, exponential affine in (zt−1, yt−1), since yt−1

appears in the πij,t’s. However, this is the case if the πij,t’s do not depend on yt−1 and then
(zt, yt) is Car(1) (see Darolles, Gourieroux and Jasiak, 2006[20] or Bertholon, Monfort and
Pegoraro (2008) [7] for in-depth presentations of Car processes).

3. Stochastic discount factor and risk-neutral dynamics

3.1. Stochastic discount factor

We complete the model by specifying the stochastic discount factor Mt−1,t between t − 1
and t:

Mt−1,t = exp
�
−a

�
1zt−1 − b

�
1yt−1 −

1
2
ν
�
(zt, zt−1, yt−1) ν (zt, zt−1, yt−1) +

+ν
�
(zt, zt−1, yt−1) εt + δ

�
(zt−1, yt−1) zt

�
, (6)

with the constraints:
J�

j=1

πij,t−1 exp [δj (ei, yt−1)] = 1, ∀i, yt−1, (7)
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where δj is the j
th component of δ. Using Equation (7), it is easily seen that Et−1(Mt−1,t) =

exp(−a
�
1zt−1 − b

�
1yt−1). Therefore, the riskless short rate between t− 1 and t is:

rt = a
�
1zt−1 + b

�
1yt−1. (8)

In our framework, the variables (xn,t, dn,t), specific to entity n, do not appear in the
stochastic discount factor. This means that these entities have no impact at the macroe-
conomic level.10 This can be formalised in the following way. Let us assume that the
N entities appearing in the modeling belong to a large population of size Ñ . This large
population could appear in Mt−1,t, for instance through a term of the form

Gt(Ñ) =
1
Ñ

Ñ�

n=1

�
ν
�
nxn,t + ν

�
0ndn,t

�
.

Since the (xn,t, dn,t), i = 1, . . . , Ñ are independent conditonally to zt, yt
, we have, denoting

respectively by Et and Vt the conditional expectation and variance (or variance-covariance
matrix) given zt, yt

:

Vt

�
Gt

�
Ñ

��
=

1
Ñ2

Ñ�

n=1

�
ν
�
n, ν0,n

�
Vt

�
x
�
n,t, dn,t

� �
ν
�
n, ν0,n

�
�
.

Assuming that the terms in the sum are bounded when Ñ goes to infinity, which means
that all the entities have a bounded weight in the infinite population, Vt(Gt(Ñ)) goes to
zero, when Ñ goes to infinity and Gt(Ñ) converges in mean square to lim

Ñ→∞Et(Gt(Ñ))
(which is assumed to exist). Therefore, Gt(Ñ) asymptotically depends only on (zt, yt

).
which already appears in Mt−1,t. In some sense, the impact of these entities has been
diversified away.

So the framework of this paper can be used in the context described above, the entities
appearing in the modeling are those of specific interest, and the sequential inference method
proposed in section 6 shows that these entities can be incorporated progressively in the
model.

3.2. Risk-neutral dynamics

3.2.1. The conditional risk-neutral distribution of (zt, yt) given wt−1

Let us now consider the conditional risk-neutral Laplace transform of (zt, yt) given wt−1,
ϕ

Q

t−1 (u, v) := E
Q

t−1 (exp [u�zt + v
�
yt]), and let us introduce the simplified notations:

µt = µ (zt, zt−1)
Ωt = Ω (zt, zt−1) , Σ(zt, zt−1) = ΩtΩ�t = Σt

νt = ν (zt, zt−1, yt−1)
δt−1 = δ (zt−1, yt−1) .

10Diversifiability assumptions and the implied restrictions on default risk premia are studied in details by
Jarrow, Lando and Yu (2005) [46] (in a continuous-time setting).
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Aaa Aa A Baa Ba B Caa-C Default
Aaa 0.911 0.084 0.004 0.000 0.001 0.000 0.000 0.000
Aa 0.009 0.902 0.083 0.005 0.000 0.000 0.000 0.000
A 0.000 0.042 0.898 0.055 0.003 0.000 0.000 0.001
Baa 0.000 0.004 0.072 0.868 0.041 0.009 0.003 0.001
Ba 0.000 0.000 0.007 0.074 0.788 0.107 0.012 0.011
B 0.000 0.000 0.004 0.004 0.073 0.794 0.092 0.033
Caa-C 0.000 0.003 0.001 0.000 0.007 0.106 0.706 0.177

Table 4 – Eigenvalues of the transition matrix under both regimes

Notes: “Regime 1” is consistent with the transition matrix reported in Table 3. Regime 2 is intended

to depict a “crisis” regime. The αi,j ’s (i = 1, . . . , 7, j = 1, 2) are such that the exp(−αi,j)’s are

the eigenvalues –those different from 1– of the rating-transition matrix obtained under regime j (when

yr,t = 0).

5-yr default prob. Aaa Aa A Baa Ba B Caa-C

Regime 1 0.057% 0.24% 0.80% 1.91 % 8.72% 21.8% 52.0%

Regime 2 0.774 % 1.79 % 3.01% 6.40% 16.74% 32.6% 63.2%

-log(eigenvalues) 1st 2nd 3rd 4th 5th 6th 7th

αi,1 (i = 1, . . . ,K − 1) 0.009 0.069 0.097 0.143 0.213 0.311 0.464

αi,2 (i = 1, . . . ,K − 1) 0.017 0.110 0.146 0.205 0.294 0.463 0.807

Figure 6 displays yield curves for selected ratings under both regimes (for yr,t = 0).
Figure 7 presents some simulation results. The upper panel shows the time fluctuations of
downgrade probabilities for two different ratings. The lower panel displays yield spreads
between 10-year zero-coupon bonds issued by A-rated or Baa-rated firms and 10-year zero-
coupon bonds issued by Aaa-rated firms.

Figure 6: Yield curves for selected ratings (with impact of regimes)
Notes: The left plot shows yield curves for selected ratings, with yr,t = 0 and zt = [1, 0]� (solid lines) or zt = [0, 1]�

(dashed lines). The right plot shows the term structure of spreads vs. Aaa-rated bonds.
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Figure 7: Simulated downgrade probabilities and spreads
Notes: The lower plot shows simulated downgrade probabilities for two ratings (the downgrade can be of one or more
notches). Formally, for rating j, the upper panel plots P (τn,t > τn,t−1 | zt, yt

, xn,t, τn,t−1 = j). The grey-shaded areas
indicate “crisis” periods. The lower plot shows the yield spreads between 10-year zero-coupon bonds issued by A-rated or
Baa-rated debtors and zero-coupon bonds issued by Aaa-rated issuers.

9. Conclusion

In this paper, we have proposed an econometric framework aimed at jointly modeling
yield curves associated with different defaultable issuers. Default intensities an yields are
affine functions of a multivariate process which is Compound autoregressive (Car) in the
risk-neutral world and thus provides us with quasi-explicit (recursive) formulas for both
risk-free and defaultable bond prices.

The risk factors follow discrete-time conditionally Gaussian processes, with drifts and
variance-covariance matrices that are subject to regime shifts described by a Markov chain
with (historical) non-homogenous transition probabilities. The regime-switching feature is
relevant for credit models in several respects. First, it makes it possible to capture non-linear
behaviors of yields and spreads, which is consistent with empirical evidence. Second, it is
appropriate to capture default clusters. Third, it offers some ways of dealing with specific
forms of contagion. To that respect, we show how the framework can be used to capture
sector-contagion phenomena. An other extension accomodates credit-rating migrations.
While flexible, the model remains tractable and amenable to empirical estimation. To that
end, a sequential estimation strategy is proposed in the paper.
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A. Proofs of Sections 3 and 4

A.1. Proof of Proposition 2
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Using the expression given for Ai,t−1(u, v) leads to the result.

A.2. P.d.f. under the risk-neutral world (Proof of Lemma 1)
Let us consider a couple (X,Y ) of multivariate random vectors. Let denote with f

H(X,Y ) and

f
Q(X,Y ) their respective joint p.d.f. under the probability measure H and Q and assume that the

Radon-Nikodym derivative thate relates H and Q depends on X only and is proportional to M(X).
We have:

f
Q(X,Y ) =

f
H(X,Y )M(X)´

fH(X,Y )M(X)dXdY

=
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A.3. The risk-neutral Laplace transform of (zt, yt, xn,t)

In this appendix, we compute E
Q

t−1 (exp [u�zt + v
�
yt + w

�
xn,t]) and show that it is exponential affine

in (zt−1, yt−1, xn,t−1), that is, we show that (zt, yt, xn,t) is Car(1) (see Darolles, Gourieroux and

Jasiak, 2006 [20]).
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The fact that(zt, yt, xn,t, dn,t) is not Car(1) is obtained by noting that (for dn,t−1 = 0):
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exponential affine in (zt−1, yt−1, xn,t−1, dn,t−1). Consequently, (zt, yt, xn,t, dn,t) is not Car(1).

A.4. Proof of Lemma 2
The formula is true for h = 1 since:
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A.5. Proof of Proposition 3
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A.6. Proof of Proposition 5
From Proposition 4, we have:
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A.7. Proof of Proposition 6 (Pricing of defaultable bonds with nonzero
recovery rates)

Section 4 gives quasi-explicit formulas for the pricing of bonds with zero recovery rates. In the

current appendix, we present conditions under which one can derive formulas for nonzero-recovery-

rate bond pricing. Figure 8 presents the payoff schedule considered here. As shown in this figure,

if a debtor n defaults between t − 1 and t (with t < T , where T denotes the contractual maturity

of a bond issued by this debtor), recovery is assumed to take place at time t. In addition, we

assume that the recovery payoff –i.e. one minus the loss-given-default– depends on (zt, yt, xt). This

recovery payoff is denoted by R
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:= R(zt, yt, xt, T − t).

Let us consider the price B
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bond issued by a given debtor (before T − 1). We distinguish three cases:
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2. The debtor defaulted between T − 2 and T − 1, then: B
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Figure 8: Payoffs stemming from a defaultable bond (issued before t− 1)
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Further, let us consider the price of the same bond in period T − 2. Assuming that there was no

default before T − 2:
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n,T

)
�
I{dn,T−1=0} + ζ

1
n,T−1I{dn,T−1=1}

�

| z
T−1, yT−1

, x
n,T−1, dn,T−2 = 0

�
| z

T−2, yT−2
, x

n,T−2, dn,T−2 = 0
�

= E
Q

�
exp(−rT−1 − rT − λ̃

0
n,T

)
�
exp(−λn,T−1) + ζ

1
n,T−1 (1− exp(−λn,T−1))

�

| z
T−2, yT−2

, x
n,T−2

�
.

Then, defining the random variable λ̃
1
n,T−1 by:

exp(−λ̃
1
n,T−1) = exp(−λn,T−1) + (1− exp(−λn,T−1)) ζ

1
n,T−1,
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we get (conditionally on dn,T−2 = 0):

B
DR

n
(T − 2, 2) = E

Q

�
exp(−rT − rT−1 − λ̃

0
n,T

− λ̃
1
n,T−1) | z

T−2, yT−2
, x

n,T−2

�
.

Applying this methodology recursively, it is easily seen that the price of a nonzero-recovery-rate

defaultable bond of maturity h is given by (assuming no default before t, i.e. conditionally on

dn,t = 0):

B
DR

n
(t, h) = E

Q

�
exp(−rt+h − . . .− rt+1 − λ̃

0
n,t+h

− . . .− λ̃
h−1
n,t+1) | z

t
, y

t
, x

n,t

�
(30)

where the λ̃
h−i

n,t+i
’s are defined recursively in i by the backward equation:

exp(−λ̃
h−i

n,t+i
) = exp(−λn,t+i) + (1− exp(−λn,t+i)) ζ

h−i

n,t+i

where

ζ
h−i

n,t+i
=






R
h−i
n,t+i

EQ
h
exp(−rt+h−...−rt+i+1−λ̃

0
n,t+h−...−λ̃

h−i−1
n,t+i+1)|zt+i,yt+i

,xn,t+i

i if i < h

Rt+h,0 if i = h.

Looking at Equation (30), it is tempting to interpret the λ̃
h−i

n,t+i
’s as “recovery-adjusted” hazard

rates for debtor n. However, the dependency of these intensities on the maturity h of the considered

bond is problematic. Indeed, by analogy with the standard default intensities λn,t, one would like

to have, at each period, only one adjusted intensity by debtor (and not a collection of adjusted

intensities associated with the different bonds that have been issued by the considered debtor). To

that end, Duffie and Singleton (1999) [28] propose a “recovery of market value” assumption. Under

this assumption, the variable R
m

n,s
–that is, the recovery at time s of a bond with residual maturity

m, in the event of default between s − 1 and s– is equal to the product of a factor common to all
maturities with the survival-contingent market value at time s. In the same spirit, let us assume

that the ζ
m

n,s
’s do no longer depend on m. Then, the λ̃

m

n,s
do not depend on the maturity any longer

and are simply given by:

exp(−λ̃n,s) = exp(−λn,s) + (1− exp(−λn,s)) ζn,s.

Actually, this formulation is more general than the one considered by Duffie and Singleton (1999)

when they expose a discrete-time motivation. Indeed, in the latter case, they assume that ζn,s is

known at time s− 1, which is not necessarily the case in the framework described above.

B. Kitagawa-Hamilton algorithm for partially-hidden Markov

chains

In this appendix, we describe how to use the Hamilton’s (1990) [42] algorithm within the estimation

strategy presented in Section 6, when the Markov chain is partially observed. While the algorithm

was originally presented in a model with fixed transition probabilities, it readily generalizes to

processes in which transition probabilities depend on a vector of observed variables.
23

Let us denote with ŷt the vector of observed variables (ỹ�
t
, R1t, z

�
1t

)�. The Hamilton’s algorithm

consists in computing recursively the probabilities p(z2t | ŷ
t
). As a by product, the algorithm

provides the conditional densities f(ŷt | ŷ
t−1

), which makes it possible to estimate the model

parameters by maximization of the log-likelihood. The algorithm is based on the iterative imple-

mentation of the following steps (the input being p(z2t−1 | ŷ
t−1

)):

23See e.g. Filardo (1994) [33] for implementation examples of Hamilton’s algorithm in models with time-
varying transition probabilities.
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1. The joint probability p (z2t, z2t−1 | ŷt−1) is computed using:

p

�
z2t, z2t−1 | ŷ

t−1

�
= p

�
z2t | z2t−1, ŷ

t−1

�
× p

�
z2t−1 | ŷ

t−1

�

where the first term of the right-hand side is a sum of entries of the transition matrix {πij,t−1}
and the second term is the input.

2. The joint conditional density f(ŷt, z2t, z2t−1 | ŷ
t−1

) is then given by:

f(ŷt, z2t, z2t−1 | ŷ
t−1

) = f(ŷt | z2t, z2t−1, ŷ
t−1

)× p

�
z2t, z2t−1 | ŷ

t−1

�

where

f(ŷt | z2t, z2t−1, ŷ
t−1

) = f(ỹt, R1t, z1t | z2t, z2t−1, ŷ
t−1

)

= f(ỹt, R1t | z1t, z2t, z2t−1, ŷ
t−1

)× p(z1t | z2t, z2t−1, ŷ
t−1

)

with

p(z1t | z2t, z2t−1, ŷ
t−1

) =
p(z1t, z2t | z2t−1, ŷ

t−1
)

p(z2t | z2t−1, ŷ
t−1

)

and all the terms can be computed.

3. The conditional densityf(ŷt | ŷ
t−1

) is given by:

f(ŷt | ŷ
t−1

) =
�

z2,t

�

z2,t−1

f(ŷt, z2t, z2t−1 | ŷ
t−1

).

4. The joint density p

�
z2t, z2t−1 | ŷ

t

�
comes from:

p

�
z2t, z2t−1 | ŷ

t

�
=

f(ŷt, z2t, z2t−1 | ŷ
t−1

)
f(ŷt | ŷ

t−1
)

.

5. And eventually:

p

�
z2t | ŷ

t

�
=

�

z2,t−1

p

�
z2t, z2t−1 | ŷ

t

�
.

C. About the eigenvectors of the rating-migration matrix Π

In this appendix, using the notations presented in Subsection 8.4, we outline some properties of

matrices Π and V . For notational simplicity, we drop arguments and time subscripts associated

with these matrices.

• As the sum of the entries of each line of Π is equal to 1, the vector
�

1 · · · 1
��

is an

eigenvector of Π associated with the eigenvalue 1. Consequently, since this eigenvalue is

supposed to be the last one appearing in Ψ, the last column of V –that collects the eigevectors

of Π– is proportional to
�

1 · · · 1
��

.

• The fact that default is an absorbing state implies that the last row of Π is
�

0 · · · 0 1
�
.

Since we have ΠV = V Ψ, it comes (considering the last line of this equation):

∀j VK,j = VK,j exp (−ψj) ,

which implies: ∀j < K, VK,j = 0.
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• The two previous points imply that the matrix V admits the following form:

V =





V1,1 · · · V1,K−1 γ

.

.

.
. . .

.

.

.
.
.
.

VK−1,1 · · · VK−1,K−1 γ

0 · · · 0 γ





Since V V
−1 = I, we have (considering the last line and using the notation V

−1
i,j

for the entry

(i, j) of V
−1

) �
V
−1
K,1 · · · V

−1
K,,K−1 V

−1
K,K

�
=

�
0 · · · 0 1

γ

�

and, therefore, for i = 1, . . . ,K, we have Vi,KV
−1
K,K

= 1.
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